{"title":"高性能可扩展指令集计算","authors":"Heui ran Lee, P. Becket, B. Appelbe","doi":"10.1109/ACAC.2001.903365","DOIUrl":null,"url":null,"abstract":"In this paper, a new architecture called the extendable instruction set computer (EISC) is introduced that addresses the issues of memory size and performance in embedded microprocessor systems. The architecture exhibits an efficient fixed length 16-bit instruction set with short length offset and immediate operands. The offset and immediate operands can be extended to 32 bits via the operation of an extension flag. The code density of the EISC instruction set and its memory transfer performance is shown to be significantly higher than current architectures making it a suitable candidate for the next generation of embedded computer systems. The compact EISC instruction set introduces data dependencies that seemingly limit deep pipeline and superscalar implementations. This paper suggests a mechanism by which these dependencies might be removed in hardware.","PeriodicalId":230403,"journal":{"name":"Proceedings 6th Australasian Computer Systems Architecture Conference. ACSAC 2001","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"High-performance extendable instruction set computing\",\"authors\":\"Heui ran Lee, P. Becket, B. Appelbe\",\"doi\":\"10.1109/ACAC.2001.903365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new architecture called the extendable instruction set computer (EISC) is introduced that addresses the issues of memory size and performance in embedded microprocessor systems. The architecture exhibits an efficient fixed length 16-bit instruction set with short length offset and immediate operands. The offset and immediate operands can be extended to 32 bits via the operation of an extension flag. The code density of the EISC instruction set and its memory transfer performance is shown to be significantly higher than current architectures making it a suitable candidate for the next generation of embedded computer systems. The compact EISC instruction set introduces data dependencies that seemingly limit deep pipeline and superscalar implementations. This paper suggests a mechanism by which these dependencies might be removed in hardware.\",\"PeriodicalId\":230403,\"journal\":{\"name\":\"Proceedings 6th Australasian Computer Systems Architecture Conference. ACSAC 2001\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 6th Australasian Computer Systems Architecture Conference. ACSAC 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACAC.2001.903365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 6th Australasian Computer Systems Architecture Conference. ACSAC 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACAC.2001.903365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-performance extendable instruction set computing
In this paper, a new architecture called the extendable instruction set computer (EISC) is introduced that addresses the issues of memory size and performance in embedded microprocessor systems. The architecture exhibits an efficient fixed length 16-bit instruction set with short length offset and immediate operands. The offset and immediate operands can be extended to 32 bits via the operation of an extension flag. The code density of the EISC instruction set and its memory transfer performance is shown to be significantly higher than current architectures making it a suitable candidate for the next generation of embedded computer systems. The compact EISC instruction set introduces data dependencies that seemingly limit deep pipeline and superscalar implementations. This paper suggests a mechanism by which these dependencies might be removed in hardware.