嵌入式实时点云地面分割的自适应算法

Gilberto Marcon dos Santos, Victor Terra Ferrão, C. Vinhal, G. Cruz
{"title":"嵌入式实时点云地面分割的自适应算法","authors":"Gilberto Marcon dos Santos, Victor Terra Ferrão, C. Vinhal, G. Cruz","doi":"10.1109/SOCPAR.2015.7492787","DOIUrl":null,"url":null,"abstract":"This paper presents a fast algorithm for ground segmentation that quickly and accurately differentiates ground points from obstacles after processing unstructured point clouds. Unlike most recent approaches found in the literature, it does not rely on any sensor-specific feature or data ordering. It performs an orthogonal projection into the horizontal plane followed by a top-down 4-ary tree segmentation. The segmentation self-adapts to the point cloud, focusing processing effort on detailed areas. This adaptive subdivision process allows successfully extracting ground points even when the floor is not perfectly flat. Finally, tests demonstrate real-time performance for execution in low cost embedded devices.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An adaptive algorithm for embedded real-time point cloud ground segmentation\",\"authors\":\"Gilberto Marcon dos Santos, Victor Terra Ferrão, C. Vinhal, G. Cruz\",\"doi\":\"10.1109/SOCPAR.2015.7492787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a fast algorithm for ground segmentation that quickly and accurately differentiates ground points from obstacles after processing unstructured point clouds. Unlike most recent approaches found in the literature, it does not rely on any sensor-specific feature or data ordering. It performs an orthogonal projection into the horizontal plane followed by a top-down 4-ary tree segmentation. The segmentation self-adapts to the point cloud, focusing processing effort on detailed areas. This adaptive subdivision process allows successfully extracting ground points even when the floor is not perfectly flat. Finally, tests demonstrate real-time performance for execution in low cost embedded devices.\",\"PeriodicalId\":409493,\"journal\":{\"name\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2015.7492787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种对非结构化点云进行处理后的快速地面分割算法,该算法能够快速准确地将地面点与障碍物区分开来。与文献中发现的大多数最新方法不同,它不依赖于任何特定于传感器的特征或数据排序。它执行一个正交投影到水平面,然后是一个自顶向下的四叉树分割。分割自适应点云,集中处理工作的细节区域。这种自适应细分过程可以成功地提取接地点,即使地板不是完全平坦的。最后,测试证明了在低成本嵌入式设备上执行的实时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive algorithm for embedded real-time point cloud ground segmentation
This paper presents a fast algorithm for ground segmentation that quickly and accurately differentiates ground points from obstacles after processing unstructured point clouds. Unlike most recent approaches found in the literature, it does not rely on any sensor-specific feature or data ordering. It performs an orthogonal projection into the horizontal plane followed by a top-down 4-ary tree segmentation. The segmentation self-adapts to the point cloud, focusing processing effort on detailed areas. This adaptive subdivision process allows successfully extracting ground points even when the floor is not perfectly flat. Finally, tests demonstrate real-time performance for execution in low cost embedded devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信