Daiwei Li, Zheng Zeng, Junliang Cao, Di Lu, Chengke Xiong, L. Lian
{"title":"一种仿生水下滑翔机,具有波动鳍,用于长时间,空间明确的水柱采样","authors":"Daiwei Li, Zheng Zeng, Junliang Cao, Di Lu, Chengke Xiong, L. Lian","doi":"10.1109/AUV.2016.7778722","DOIUrl":null,"url":null,"abstract":"This paper presents the design and experimental evaluation of a bio-inspired underwater glider with undulatory fin, which is highly maneuverable and energy efficient and holds strong promise for long-duration monitoring of aquatic environments. A novel scheme is proposed for spatially explicit water column sampling using the bio-inspired underwater glider. The scheme using spiraling motion to sample each water column, followed by sawtooth motion toward the direction of the next water column. Once surfacing, the glider uses undulatory fin propulsion to reach the next column location. Comprehensive design for the bio-inspired underwater glider prototype, comprised of six individually-actuated fin, is provided. Experiments are performed in a test tank to investigate the performance and maneuverability of the bio-inspired underwater glider prototype via surface swimming.","PeriodicalId":416057,"journal":{"name":"2016 IEEE/OES Autonomous Underwater Vehicles (AUV)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A bio-inspired underwater glider with undulatory fin for long-duration, spatially explicit water column sampling\",\"authors\":\"Daiwei Li, Zheng Zeng, Junliang Cao, Di Lu, Chengke Xiong, L. Lian\",\"doi\":\"10.1109/AUV.2016.7778722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design and experimental evaluation of a bio-inspired underwater glider with undulatory fin, which is highly maneuverable and energy efficient and holds strong promise for long-duration monitoring of aquatic environments. A novel scheme is proposed for spatially explicit water column sampling using the bio-inspired underwater glider. The scheme using spiraling motion to sample each water column, followed by sawtooth motion toward the direction of the next water column. Once surfacing, the glider uses undulatory fin propulsion to reach the next column location. Comprehensive design for the bio-inspired underwater glider prototype, comprised of six individually-actuated fin, is provided. Experiments are performed in a test tank to investigate the performance and maneuverability of the bio-inspired underwater glider prototype via surface swimming.\",\"PeriodicalId\":416057,\"journal\":{\"name\":\"2016 IEEE/OES Autonomous Underwater Vehicles (AUV)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/OES Autonomous Underwater Vehicles (AUV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUV.2016.7778722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/OES Autonomous Underwater Vehicles (AUV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUV.2016.7778722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A bio-inspired underwater glider with undulatory fin for long-duration, spatially explicit water column sampling
This paper presents the design and experimental evaluation of a bio-inspired underwater glider with undulatory fin, which is highly maneuverable and energy efficient and holds strong promise for long-duration monitoring of aquatic environments. A novel scheme is proposed for spatially explicit water column sampling using the bio-inspired underwater glider. The scheme using spiraling motion to sample each water column, followed by sawtooth motion toward the direction of the next water column. Once surfacing, the glider uses undulatory fin propulsion to reach the next column location. Comprehensive design for the bio-inspired underwater glider prototype, comprised of six individually-actuated fin, is provided. Experiments are performed in a test tank to investigate the performance and maneuverability of the bio-inspired underwater glider prototype via surface swimming.