{"title":"多分辨率局部二值模式图像分类","authors":"Peng Liang, Shao-fa Li, Jiang Qin","doi":"10.1109/ICWAPR.2010.5576318","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method to extract image features for image classification. The extracted feature named multi-resolution local binary pattern (MR-LBP) is based on the local binary pattern (LBP) feature. The MR-LBP feature is highly distinctive by making use of multi-resolution patterns to obtain more descriptive information. The experiments results demonstrate the proposed MR-LBP feature is robust to image rotation, illumination changes and image noises. We also describe a descriptor called MR-LBP descriptor to using the features for image classification. Through experiments, our proposed approach performs favorably compared with the most well-known SIFT descriptor in two benchmark dataset. What's more, the proposed descriptor is computation simpler than the SIFT descriptor.","PeriodicalId":219884,"journal":{"name":"2010 International Conference on Wavelet Analysis and Pattern Recognition","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Multi-resolution local binary patterns for image classification\",\"authors\":\"Peng Liang, Shao-fa Li, Jiang Qin\",\"doi\":\"10.1109/ICWAPR.2010.5576318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method to extract image features for image classification. The extracted feature named multi-resolution local binary pattern (MR-LBP) is based on the local binary pattern (LBP) feature. The MR-LBP feature is highly distinctive by making use of multi-resolution patterns to obtain more descriptive information. The experiments results demonstrate the proposed MR-LBP feature is robust to image rotation, illumination changes and image noises. We also describe a descriptor called MR-LBP descriptor to using the features for image classification. Through experiments, our proposed approach performs favorably compared with the most well-known SIFT descriptor in two benchmark dataset. What's more, the proposed descriptor is computation simpler than the SIFT descriptor.\",\"PeriodicalId\":219884,\"journal\":{\"name\":\"2010 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2010.5576318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2010.5576318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-resolution local binary patterns for image classification
This paper presents a novel method to extract image features for image classification. The extracted feature named multi-resolution local binary pattern (MR-LBP) is based on the local binary pattern (LBP) feature. The MR-LBP feature is highly distinctive by making use of multi-resolution patterns to obtain more descriptive information. The experiments results demonstrate the proposed MR-LBP feature is robust to image rotation, illumination changes and image noises. We also describe a descriptor called MR-LBP descriptor to using the features for image classification. Through experiments, our proposed approach performs favorably compared with the most well-known SIFT descriptor in two benchmark dataset. What's more, the proposed descriptor is computation simpler than the SIFT descriptor.