多分辨率局部二值模式图像分类

Peng Liang, Shao-fa Li, Jiang Qin
{"title":"多分辨率局部二值模式图像分类","authors":"Peng Liang, Shao-fa Li, Jiang Qin","doi":"10.1109/ICWAPR.2010.5576318","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method to extract image features for image classification. The extracted feature named multi-resolution local binary pattern (MR-LBP) is based on the local binary pattern (LBP) feature. The MR-LBP feature is highly distinctive by making use of multi-resolution patterns to obtain more descriptive information. The experiments results demonstrate the proposed MR-LBP feature is robust to image rotation, illumination changes and image noises. We also describe a descriptor called MR-LBP descriptor to using the features for image classification. Through experiments, our proposed approach performs favorably compared with the most well-known SIFT descriptor in two benchmark dataset. What's more, the proposed descriptor is computation simpler than the SIFT descriptor.","PeriodicalId":219884,"journal":{"name":"2010 International Conference on Wavelet Analysis and Pattern Recognition","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Multi-resolution local binary patterns for image classification\",\"authors\":\"Peng Liang, Shao-fa Li, Jiang Qin\",\"doi\":\"10.1109/ICWAPR.2010.5576318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method to extract image features for image classification. The extracted feature named multi-resolution local binary pattern (MR-LBP) is based on the local binary pattern (LBP) feature. The MR-LBP feature is highly distinctive by making use of multi-resolution patterns to obtain more descriptive information. The experiments results demonstrate the proposed MR-LBP feature is robust to image rotation, illumination changes and image noises. We also describe a descriptor called MR-LBP descriptor to using the features for image classification. Through experiments, our proposed approach performs favorably compared with the most well-known SIFT descriptor in two benchmark dataset. What's more, the proposed descriptor is computation simpler than the SIFT descriptor.\",\"PeriodicalId\":219884,\"journal\":{\"name\":\"2010 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2010.5576318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2010.5576318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

提出了一种提取图像特征用于图像分类的新方法。基于局部二进制模式(LBP)特征,提取出多分辨率局部二进制模式(MR-LBP)特征。MR-LBP特征通过使用多分辨率模式来获得更多的描述性信息,具有很强的独特性。实验结果表明,所提出的MR-LBP特征对图像旋转、光照变化和图像噪声具有较强的鲁棒性。我们还描述了一种称为MR-LBP描述符的描述符,利用特征对图像进行分类。通过实验,在两个基准数据集中,与最知名的SIFT描述符相比,我们提出的方法表现良好。此外,所提出的描述符比SIFT描述符计算更简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-resolution local binary patterns for image classification
This paper presents a novel method to extract image features for image classification. The extracted feature named multi-resolution local binary pattern (MR-LBP) is based on the local binary pattern (LBP) feature. The MR-LBP feature is highly distinctive by making use of multi-resolution patterns to obtain more descriptive information. The experiments results demonstrate the proposed MR-LBP feature is robust to image rotation, illumination changes and image noises. We also describe a descriptor called MR-LBP descriptor to using the features for image classification. Through experiments, our proposed approach performs favorably compared with the most well-known SIFT descriptor in two benchmark dataset. What's more, the proposed descriptor is computation simpler than the SIFT descriptor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信