使用统计方法在真实场景中进行人员跟踪

G. Rigoll, S. Eickeler, Stefan Müller
{"title":"使用统计方法在真实场景中进行人员跟踪","authors":"G. Rigoll, S. Eickeler, Stefan Müller","doi":"10.1109/AFGR.2000.840657","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to robust and flexible person tracking using an algorithm that combines two powerful stochastic modeling techniques: pseudo-2D hidden Markov models (P2DHMM) used for capturing the shape of a person within an image frame, and the well-known Kalman-filtering algorithm, that uses the output of the P2DHMM for tracking the person by estimation of a bounding box trajectory indicating the location of the person within the entire video sequence. Both algorithms cooperate together in an optimal way, and with this co-operative feedback, the proposed approach even makes the tracking of people possible in the presence of background motions caused by moving objects or by camera operations as, e.g., panning or zooming. Our results are confirmed by several tracking examples in real scenarios, shown at the end of the paper and provided on the Web server of our institute.","PeriodicalId":360065,"journal":{"name":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Person tracking in real-world scenarios using statistical methods\",\"authors\":\"G. Rigoll, S. Eickeler, Stefan Müller\",\"doi\":\"10.1109/AFGR.2000.840657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach to robust and flexible person tracking using an algorithm that combines two powerful stochastic modeling techniques: pseudo-2D hidden Markov models (P2DHMM) used for capturing the shape of a person within an image frame, and the well-known Kalman-filtering algorithm, that uses the output of the P2DHMM for tracking the person by estimation of a bounding box trajectory indicating the location of the person within the entire video sequence. Both algorithms cooperate together in an optimal way, and with this co-operative feedback, the proposed approach even makes the tracking of people possible in the presence of background motions caused by moving objects or by camera operations as, e.g., panning or zooming. Our results are confirmed by several tracking examples in real scenarios, shown at the end of the paper and provided on the Web server of our institute.\",\"PeriodicalId\":360065,\"journal\":{\"name\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFGR.2000.840657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFGR.2000.840657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

本文提出了一种新颖的鲁棒和灵活的人跟踪方法,使用一种结合了两种强大的随机建模技术的算法:伪2d隐马尔可夫模型(P2DHMM),用于捕获图像帧内的人的形状,以及著名的卡尔曼滤波算法,该算法使用P2DHMM的输出通过估计一个边界框轨迹来跟踪人,该边界框轨迹指示整个视频序列中人的位置。两种算法以最优的方式协同工作,并且通过这种协同反馈,所提出的方法甚至可以在由移动物体或摄像机操作(例如平移或缩放)引起的背景运动存在的情况下跟踪人。我们的结果被几个真实场景中的跟踪示例所证实,这些示例在论文的末尾显示,并在我们研究所的Web服务器上提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Person tracking in real-world scenarios using statistical methods
This paper presents a novel approach to robust and flexible person tracking using an algorithm that combines two powerful stochastic modeling techniques: pseudo-2D hidden Markov models (P2DHMM) used for capturing the shape of a person within an image frame, and the well-known Kalman-filtering algorithm, that uses the output of the P2DHMM for tracking the person by estimation of a bounding box trajectory indicating the location of the person within the entire video sequence. Both algorithms cooperate together in an optimal way, and with this co-operative feedback, the proposed approach even makes the tracking of people possible in the presence of background motions caused by moving objects or by camera operations as, e.g., panning or zooming. Our results are confirmed by several tracking examples in real scenarios, shown at the end of the paper and provided on the Web server of our institute.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信