IPO-MAXSAT:参数阶内策略结合MaxSAT求解覆盖阵列生成

Irene Hiess, Ludwig Kampel, Michael Wagner, D. Simos
{"title":"IPO-MAXSAT:参数阶内策略结合MaxSAT求解覆盖阵列生成","authors":"Irene Hiess, Ludwig Kampel, Michael Wagner, D. Simos","doi":"10.1109/SYNASC57785.2022.00021","DOIUrl":null,"url":null,"abstract":"Covering arrays (CAs) are combinatorial designs that represent the backbone of combinatorial testing, which is applied most prominently in automated software testing. The generation of optimized CAs is a difficult combinatorial optimization problem being subject to ongoing research. Previous studies have shown that many different algorithmic approaches are best suited for different instances of CAs. In this paper we present the IPO-MAXSAT algorithm, which adopts the prominent inparameter-order (IPO) strategy for CA generation and uses MaxSAT solving to optimize the occurring sub-problems. We devise three different algorithmic variants that use a MaxSAT solver for different sub-problems. These variants are evaluated in an extensive set of experiments where we also consider the usage of different MaxSAT solvers. Further, we provide a comparison against various other algorithms realizing the IPO strategy as well as the state of the art.","PeriodicalId":446065,"journal":{"name":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IPO-MAXSAT: The In-Parameter-Order Strategy combined with MaxSAT solving for Covering Array Generation\",\"authors\":\"Irene Hiess, Ludwig Kampel, Michael Wagner, D. Simos\",\"doi\":\"10.1109/SYNASC57785.2022.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Covering arrays (CAs) are combinatorial designs that represent the backbone of combinatorial testing, which is applied most prominently in automated software testing. The generation of optimized CAs is a difficult combinatorial optimization problem being subject to ongoing research. Previous studies have shown that many different algorithmic approaches are best suited for different instances of CAs. In this paper we present the IPO-MAXSAT algorithm, which adopts the prominent inparameter-order (IPO) strategy for CA generation and uses MaxSAT solving to optimize the occurring sub-problems. We devise three different algorithmic variants that use a MaxSAT solver for different sub-problems. These variants are evaluated in an extensive set of experiments where we also consider the usage of different MaxSAT solvers. Further, we provide a comparison against various other algorithms realizing the IPO strategy as well as the state of the art.\",\"PeriodicalId\":446065,\"journal\":{\"name\":\"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC57785.2022.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC57785.2022.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

覆盖阵列(ca)是组合设计,它代表了组合测试的主干,在自动化软件测试中应用最为突出。优化CAs的生成是一个复杂的组合优化问题,目前仍在研究中。先前的研究表明,许多不同的算法方法最适合于ca的不同实例。本文提出了IPO- MaxSAT算法,该算法采用突出的无参数阶(IPO)策略生成CA,并利用MaxSAT求解来优化出现的子问题。我们设计了三种不同的算法变体,使用MaxSAT求解器来解决不同的子问题。这些变量在一组广泛的实验中进行评估,我们还考虑了不同MaxSAT求解器的使用。此外,我们还提供了与实现IPO策略的各种其他算法以及最新技术的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IPO-MAXSAT: The In-Parameter-Order Strategy combined with MaxSAT solving for Covering Array Generation
Covering arrays (CAs) are combinatorial designs that represent the backbone of combinatorial testing, which is applied most prominently in automated software testing. The generation of optimized CAs is a difficult combinatorial optimization problem being subject to ongoing research. Previous studies have shown that many different algorithmic approaches are best suited for different instances of CAs. In this paper we present the IPO-MAXSAT algorithm, which adopts the prominent inparameter-order (IPO) strategy for CA generation and uses MaxSAT solving to optimize the occurring sub-problems. We devise three different algorithmic variants that use a MaxSAT solver for different sub-problems. These variants are evaluated in an extensive set of experiments where we also consider the usage of different MaxSAT solvers. Further, we provide a comparison against various other algorithms realizing the IPO strategy as well as the state of the art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信