{"title":"EyeTab:未经修改的平板电脑上基于模型的凝视估计","authors":"Erroll Wood, A. Bulling","doi":"10.1145/2578153.2578185","DOIUrl":null,"url":null,"abstract":"Despite the widespread use of mobile phones and tablets, hand-held portable devices have only recently been identified as a promising platform for gaze-aware applications. Estimating gaze on portable devices is challenging given their limited computational resources, low quality integrated front-facing RGB cameras, and small screens to which gaze is mapped. In this paper we present EyeTab, a model-based approach for binocular gaze estimation that runs entirely on an unmodified tablet. EyeTab builds on set of established image processing and computer vision algorithms and adapts them for robust and near-realtime gaze estimation. A technical prototype evaluation with eight participants in a normal indoors office setting shows that EyeTab achieves an average gaze estimation accuracy of 6.88° of visual angle at 12 frames per second.","PeriodicalId":142459,"journal":{"name":"Proceedings of the Symposium on Eye Tracking Research and Applications","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"233","resultStr":"{\"title\":\"EyeTab: model-based gaze estimation on unmodified tablet computers\",\"authors\":\"Erroll Wood, A. Bulling\",\"doi\":\"10.1145/2578153.2578185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the widespread use of mobile phones and tablets, hand-held portable devices have only recently been identified as a promising platform for gaze-aware applications. Estimating gaze on portable devices is challenging given their limited computational resources, low quality integrated front-facing RGB cameras, and small screens to which gaze is mapped. In this paper we present EyeTab, a model-based approach for binocular gaze estimation that runs entirely on an unmodified tablet. EyeTab builds on set of established image processing and computer vision algorithms and adapts them for robust and near-realtime gaze estimation. A technical prototype evaluation with eight participants in a normal indoors office setting shows that EyeTab achieves an average gaze estimation accuracy of 6.88° of visual angle at 12 frames per second.\",\"PeriodicalId\":142459,\"journal\":{\"name\":\"Proceedings of the Symposium on Eye Tracking Research and Applications\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"233\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Symposium on Eye Tracking Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2578153.2578185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2578153.2578185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EyeTab: model-based gaze estimation on unmodified tablet computers
Despite the widespread use of mobile phones and tablets, hand-held portable devices have only recently been identified as a promising platform for gaze-aware applications. Estimating gaze on portable devices is challenging given their limited computational resources, low quality integrated front-facing RGB cameras, and small screens to which gaze is mapped. In this paper we present EyeTab, a model-based approach for binocular gaze estimation that runs entirely on an unmodified tablet. EyeTab builds on set of established image processing and computer vision algorithms and adapts them for robust and near-realtime gaze estimation. A technical prototype evaluation with eight participants in a normal indoors office setting shows that EyeTab achieves an average gaze estimation accuracy of 6.88° of visual angle at 12 frames per second.