EyeTab:未经修改的平板电脑上基于模型的凝视估计

Erroll Wood, A. Bulling
{"title":"EyeTab:未经修改的平板电脑上基于模型的凝视估计","authors":"Erroll Wood, A. Bulling","doi":"10.1145/2578153.2578185","DOIUrl":null,"url":null,"abstract":"Despite the widespread use of mobile phones and tablets, hand-held portable devices have only recently been identified as a promising platform for gaze-aware applications. Estimating gaze on portable devices is challenging given their limited computational resources, low quality integrated front-facing RGB cameras, and small screens to which gaze is mapped. In this paper we present EyeTab, a model-based approach for binocular gaze estimation that runs entirely on an unmodified tablet. EyeTab builds on set of established image processing and computer vision algorithms and adapts them for robust and near-realtime gaze estimation. A technical prototype evaluation with eight participants in a normal indoors office setting shows that EyeTab achieves an average gaze estimation accuracy of 6.88° of visual angle at 12 frames per second.","PeriodicalId":142459,"journal":{"name":"Proceedings of the Symposium on Eye Tracking Research and Applications","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"233","resultStr":"{\"title\":\"EyeTab: model-based gaze estimation on unmodified tablet computers\",\"authors\":\"Erroll Wood, A. Bulling\",\"doi\":\"10.1145/2578153.2578185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the widespread use of mobile phones and tablets, hand-held portable devices have only recently been identified as a promising platform for gaze-aware applications. Estimating gaze on portable devices is challenging given their limited computational resources, low quality integrated front-facing RGB cameras, and small screens to which gaze is mapped. In this paper we present EyeTab, a model-based approach for binocular gaze estimation that runs entirely on an unmodified tablet. EyeTab builds on set of established image processing and computer vision algorithms and adapts them for robust and near-realtime gaze estimation. A technical prototype evaluation with eight participants in a normal indoors office setting shows that EyeTab achieves an average gaze estimation accuracy of 6.88° of visual angle at 12 frames per second.\",\"PeriodicalId\":142459,\"journal\":{\"name\":\"Proceedings of the Symposium on Eye Tracking Research and Applications\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"233\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Symposium on Eye Tracking Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2578153.2578185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2578153.2578185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 233

摘要

尽管手机和平板电脑被广泛使用,手持便携设备直到最近才被确定为一个有前途的平台,用于注视感知应用程序。考虑到便携式设备有限的计算资源、低质量的集成前置RGB相机和用于映射凝视的小屏幕,估计凝视是具有挑战性的。在本文中,我们提出了EyeTab,一种基于模型的双目凝视估计方法,完全运行在未经修改的平板电脑上。EyeTab建立在一套已建立的图像处理和计算机视觉算法上,并使它们适应鲁棒和近实时的凝视估计。在一个普通的室内办公环境中,对8名参与者进行的技术原型评估表明,EyeTab在每秒12帧的情况下达到了6.88°视角的平均凝视估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EyeTab: model-based gaze estimation on unmodified tablet computers
Despite the widespread use of mobile phones and tablets, hand-held portable devices have only recently been identified as a promising platform for gaze-aware applications. Estimating gaze on portable devices is challenging given their limited computational resources, low quality integrated front-facing RGB cameras, and small screens to which gaze is mapped. In this paper we present EyeTab, a model-based approach for binocular gaze estimation that runs entirely on an unmodified tablet. EyeTab builds on set of established image processing and computer vision algorithms and adapts them for robust and near-realtime gaze estimation. A technical prototype evaluation with eight participants in a normal indoors office setting shows that EyeTab achieves an average gaze estimation accuracy of 6.88° of visual angle at 12 frames per second.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信