基于深度强化学习的V2X通信拥塞控制

Moustafa Roshdi, Shubhangi Bhadauria, Khaled Hassan, Georg Fischer
{"title":"基于深度强化学习的V2X通信拥塞控制","authors":"Moustafa Roshdi, Shubhangi Bhadauria, Khaled Hassan, Georg Fischer","doi":"10.1109/PIMRC50174.2021.9569259","DOIUrl":null,"url":null,"abstract":"In release 14 (Rel-14) Long Term Evolution (LTE), the 3rd generation partnership project (3GPP) standard has introduced Cellular Vehicle to Everything (C-V2X) communication to pave the way for future intelligent transport systems (ITS). C-V2X communication envisions supporting a diverse range of use cases with varying quality of service (QoS) requirements. For example, cooperative collision avoidance re-quires stringent reliability, while infotainment use cases require a high data throughput. C-V2X communication remains susceptible to performance degradation due to network congestion. This paper presents a centralized congestion control scheme for C-V2X communication based on the Deep Reinforcement Learning (DRL) framework. A performance evaluation of the algorithm is conducted based on system-level simulation based on TAPASCologne scenario in the Simulation of Urban Mobility (SUMO) platform. The results show the effectiveness of a DRL-based approach to achieve the packet reception ratio (PRR) as per the packet’s associated QoS while maintaining the average measured Channel Busy Ratio (CBR) below 0.65.","PeriodicalId":283606,"journal":{"name":"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","volume":"287 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deep Reinforcement Learning based Congestion Control for V2X Communication\",\"authors\":\"Moustafa Roshdi, Shubhangi Bhadauria, Khaled Hassan, Georg Fischer\",\"doi\":\"10.1109/PIMRC50174.2021.9569259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In release 14 (Rel-14) Long Term Evolution (LTE), the 3rd generation partnership project (3GPP) standard has introduced Cellular Vehicle to Everything (C-V2X) communication to pave the way for future intelligent transport systems (ITS). C-V2X communication envisions supporting a diverse range of use cases with varying quality of service (QoS) requirements. For example, cooperative collision avoidance re-quires stringent reliability, while infotainment use cases require a high data throughput. C-V2X communication remains susceptible to performance degradation due to network congestion. This paper presents a centralized congestion control scheme for C-V2X communication based on the Deep Reinforcement Learning (DRL) framework. A performance evaluation of the algorithm is conducted based on system-level simulation based on TAPASCologne scenario in the Simulation of Urban Mobility (SUMO) platform. The results show the effectiveness of a DRL-based approach to achieve the packet reception ratio (PRR) as per the packet’s associated QoS while maintaining the average measured Channel Busy Ratio (CBR) below 0.65.\",\"PeriodicalId\":283606,\"journal\":{\"name\":\"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)\",\"volume\":\"287 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRC50174.2021.9569259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC50174.2021.9569259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在第14版(Rel-14)长期演进(LTE)中,第三代合作伙伴计划(3GPP)标准引入了蜂窝车辆到一切(C-V2X)通信,为未来的智能交通系统(ITS)铺平了道路。C-V2X通信设想支持具有不同服务质量(QoS)要求的各种用例。例如,协同防撞需要严格的可靠性,而信息娱乐用例需要高数据吞吐量。由于网络拥塞,C-V2X通信仍然容易受到性能下降的影响。提出了一种基于深度强化学习(DRL)框架的C-V2X通信集中拥塞控制方案。在城市交通仿真(SUMO)平台上,基于TAPASCologne场景的系统级仿真对算法进行了性能评估。结果表明,基于drl的方法可以有效地根据分组相关的QoS实现分组接收比(PRR),同时保持平均测量的信道忙比(CBR)低于0.65。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Reinforcement Learning based Congestion Control for V2X Communication
In release 14 (Rel-14) Long Term Evolution (LTE), the 3rd generation partnership project (3GPP) standard has introduced Cellular Vehicle to Everything (C-V2X) communication to pave the way for future intelligent transport systems (ITS). C-V2X communication envisions supporting a diverse range of use cases with varying quality of service (QoS) requirements. For example, cooperative collision avoidance re-quires stringent reliability, while infotainment use cases require a high data throughput. C-V2X communication remains susceptible to performance degradation due to network congestion. This paper presents a centralized congestion control scheme for C-V2X communication based on the Deep Reinforcement Learning (DRL) framework. A performance evaluation of the algorithm is conducted based on system-level simulation based on TAPASCologne scenario in the Simulation of Urban Mobility (SUMO) platform. The results show the effectiveness of a DRL-based approach to achieve the packet reception ratio (PRR) as per the packet’s associated QoS while maintaining the average measured Channel Busy Ratio (CBR) below 0.65.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信