基于集成的人工神经网络DNA芯片缺失值估计

Sujay Saha, Saikat Bandopadhyay, A. Ghosh, K. Dey
{"title":"基于集成的人工神经网络DNA芯片缺失值估计","authors":"Sujay Saha, Saikat Bandopadhyay, A. Ghosh, K. Dey","doi":"10.1109/ICRCICN.2016.7813671","DOIUrl":null,"url":null,"abstract":"DNA microarrays are normally used to measure the expression values of thousands of several genes simultaneously in the form of large matrices. This raw gene expression data may contain some missing cells. These missing values may affect the analysis performed subsequently on these gene expression data. Several imputation methods, like K-Nearest Neighbor Imputation (KNNImpute), Singular Value Decomposition Imputation (SVDImpute), Local Least Square Imputation (LLSImpute), Bayesian Principal Component Analysis (BPCAImpute) etc. have already been proposed to impute those missing values. In this work we have proposed an ensemble classifier based Artificial Neural Network implementation, ANNImpute, to enhance the accuracy of the missing value imputation technique by applying Two Layer Perceptron Learning algorithm. Ensemble classification is done on the parameters such as learning rate a, weight vector & bias. We have applied our algorithm on two benchmark datasets like SPELLMAN and Tumour (GDS2932) and the results show that this approach performs well compared to the other existing methods as far as RMSE measures are concerned.","PeriodicalId":254393,"journal":{"name":"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An ensemble based missing value estimation in DNA microarray using artificial neural network\",\"authors\":\"Sujay Saha, Saikat Bandopadhyay, A. Ghosh, K. Dey\",\"doi\":\"10.1109/ICRCICN.2016.7813671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DNA microarrays are normally used to measure the expression values of thousands of several genes simultaneously in the form of large matrices. This raw gene expression data may contain some missing cells. These missing values may affect the analysis performed subsequently on these gene expression data. Several imputation methods, like K-Nearest Neighbor Imputation (KNNImpute), Singular Value Decomposition Imputation (SVDImpute), Local Least Square Imputation (LLSImpute), Bayesian Principal Component Analysis (BPCAImpute) etc. have already been proposed to impute those missing values. In this work we have proposed an ensemble classifier based Artificial Neural Network implementation, ANNImpute, to enhance the accuracy of the missing value imputation technique by applying Two Layer Perceptron Learning algorithm. Ensemble classification is done on the parameters such as learning rate a, weight vector & bias. We have applied our algorithm on two benchmark datasets like SPELLMAN and Tumour (GDS2932) and the results show that this approach performs well compared to the other existing methods as far as RMSE measures are concerned.\",\"PeriodicalId\":254393,\"journal\":{\"name\":\"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRCICN.2016.7813671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRCICN.2016.7813671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

DNA微阵列通常用于以大矩阵的形式同时测量数千个基因的表达值。这些原始的基因表达数据可能包含一些缺失的细胞。这些缺失值可能会影响随后对这些基因表达数据进行的分析。目前已经提出了k -最近邻法(KNNImpute)、奇异值分解法(SVDImpute)、局部最小二乘法(LLSImpute)、贝叶斯主成分分析法(BPCAImpute)等方法来对缺失值进行估计。在这项工作中,我们提出了一个基于集成分类器的人工神经网络实现,ANNImpute,通过应用两层感知器学习算法来提高缺失值输入技术的准确性。在学习率a、权重向量和偏置等参数上进行集成分类。我们已经将我们的算法应用于两个基准数据集,如SPELLMAN和tumor (GDS2932),结果表明,就RMSE度量而言,与其他现有方法相比,该方法表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An ensemble based missing value estimation in DNA microarray using artificial neural network
DNA microarrays are normally used to measure the expression values of thousands of several genes simultaneously in the form of large matrices. This raw gene expression data may contain some missing cells. These missing values may affect the analysis performed subsequently on these gene expression data. Several imputation methods, like K-Nearest Neighbor Imputation (KNNImpute), Singular Value Decomposition Imputation (SVDImpute), Local Least Square Imputation (LLSImpute), Bayesian Principal Component Analysis (BPCAImpute) etc. have already been proposed to impute those missing values. In this work we have proposed an ensemble classifier based Artificial Neural Network implementation, ANNImpute, to enhance the accuracy of the missing value imputation technique by applying Two Layer Perceptron Learning algorithm. Ensemble classification is done on the parameters such as learning rate a, weight vector & bias. We have applied our algorithm on two benchmark datasets like SPELLMAN and Tumour (GDS2932) and the results show that this approach performs well compared to the other existing methods as far as RMSE measures are concerned.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信