具有最优最小汉明距离的局部可修码的修复-最优数据放置

Shuang Ma, Si Wu, Cheng Li, Yinlong Xu
{"title":"具有最优最小汉明距离的局部可修码的修复-最优数据放置","authors":"Shuang Ma, Si Wu, Cheng Li, Yinlong Xu","doi":"10.1145/3545008.3545038","DOIUrl":null,"url":null,"abstract":"Modern clustered storage systems increasingly adopt erasure coding to realize reliable data storage at low storage redundancy. Locally Repairable Codes (LRC) are a family of practical erasure codes with high repair efficiency. Among various LRC constructions, Optimal-LRC is a recently proposed LRC approach that achieves the optimal Minimum Hamming Distance with low theoretical repair costs. In this paper, we consider the repair performance of Optimal-LRC in clustered storage systems. We show that the conventional flat data placement and random data placement incur substantial cross-cluster repair traffic, which impairs the repair performance. To this end, we design an optimal data placement scheme that provably minimizes the cross-cluster repair traffic, by carefully placing each group of blocks in Optimal-LRC into a minimum number of clusters subject to single-cluster fault tolerance. We implement our optimal data placement scheme on a key-value store prototype atop Memcached, and show via LAN testbed experiments that the optimal data placement significantly improves the repair performance compared to the conventional data placements.","PeriodicalId":360504,"journal":{"name":"Proceedings of the 51st International Conference on Parallel Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Repair-Optimal Data Placement for Locally Repairable Codes with Optimal Minimum Hamming Distance\",\"authors\":\"Shuang Ma, Si Wu, Cheng Li, Yinlong Xu\",\"doi\":\"10.1145/3545008.3545038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern clustered storage systems increasingly adopt erasure coding to realize reliable data storage at low storage redundancy. Locally Repairable Codes (LRC) are a family of practical erasure codes with high repair efficiency. Among various LRC constructions, Optimal-LRC is a recently proposed LRC approach that achieves the optimal Minimum Hamming Distance with low theoretical repair costs. In this paper, we consider the repair performance of Optimal-LRC in clustered storage systems. We show that the conventional flat data placement and random data placement incur substantial cross-cluster repair traffic, which impairs the repair performance. To this end, we design an optimal data placement scheme that provably minimizes the cross-cluster repair traffic, by carefully placing each group of blocks in Optimal-LRC into a minimum number of clusters subject to single-cluster fault tolerance. We implement our optimal data placement scheme on a key-value store prototype atop Memcached, and show via LAN testbed experiments that the optimal data placement significantly improves the repair performance compared to the conventional data placements.\",\"PeriodicalId\":360504,\"journal\":{\"name\":\"Proceedings of the 51st International Conference on Parallel Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 51st International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3545008.3545038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545008.3545038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现代集群存储系统越来越多地采用擦除编码来实现低存储冗余的数据可靠存储。局部可修复码(LRC)是一类具有较高修复效率的实用纠删码。在各种LRC结构中,optimal -LRC是最近提出的一种LRC方法,它以较低的理论维修成本实现了最优最小汉明距离。本文主要研究了Optimal-LRC在集群存储系统中的修复性能。研究表明,传统的平面数据放置和随机数据放置会导致大量的跨集群修复流量,从而损害修复性能。为此,我们设计了一种优化的数据放置方案,通过将最优化- lrc中的每组块仔细放置到最小数量的集群中,使其具有单集群容错能力,从而可以证明最小化跨集群修复流量。我们在Memcached上的键值存储原型上实现了我们的最佳数据放置方案,并通过LAN测试平台实验表明,与传统数据放置相比,最佳数据放置显着提高了修复性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Repair-Optimal Data Placement for Locally Repairable Codes with Optimal Minimum Hamming Distance
Modern clustered storage systems increasingly adopt erasure coding to realize reliable data storage at low storage redundancy. Locally Repairable Codes (LRC) are a family of practical erasure codes with high repair efficiency. Among various LRC constructions, Optimal-LRC is a recently proposed LRC approach that achieves the optimal Minimum Hamming Distance with low theoretical repair costs. In this paper, we consider the repair performance of Optimal-LRC in clustered storage systems. We show that the conventional flat data placement and random data placement incur substantial cross-cluster repair traffic, which impairs the repair performance. To this end, we design an optimal data placement scheme that provably minimizes the cross-cluster repair traffic, by carefully placing each group of blocks in Optimal-LRC into a minimum number of clusters subject to single-cluster fault tolerance. We implement our optimal data placement scheme on a key-value store prototype atop Memcached, and show via LAN testbed experiments that the optimal data placement significantly improves the repair performance compared to the conventional data placements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信