{"title":"零遗漏误差的一类LS-SVM","authors":"Geritt Kampmann, O. Nelles","doi":"10.1109/CICA.2014.7013225","DOIUrl":null,"url":null,"abstract":"This paper extends the closed form calculation of the leave-one-out (LOO) error for least-squares support vector machines (LS-SVMs) from the two-class to the one-class case. Furthermore, it proposes a new algorithm for determining the hyperparameters of a one-class LS-SVM with Gaussian kernels which exploits the efficient LOO error calculation. The standard deviations are selected by prior knowledge while the regularization parameter is optimized in order to obtain a tight decision boundary under the constraint of a zero LOO error.","PeriodicalId":340740,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"One-class LS-SVM with zero leave-one-out error\",\"authors\":\"Geritt Kampmann, O. Nelles\",\"doi\":\"10.1109/CICA.2014.7013225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper extends the closed form calculation of the leave-one-out (LOO) error for least-squares support vector machines (LS-SVMs) from the two-class to the one-class case. Furthermore, it proposes a new algorithm for determining the hyperparameters of a one-class LS-SVM with Gaussian kernels which exploits the efficient LOO error calculation. The standard deviations are selected by prior knowledge while the regularization parameter is optimized in order to obtain a tight decision boundary under the constraint of a zero LOO error.\",\"PeriodicalId\":340740,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICA.2014.7013225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2014.7013225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper extends the closed form calculation of the leave-one-out (LOO) error for least-squares support vector machines (LS-SVMs) from the two-class to the one-class case. Furthermore, it proposes a new algorithm for determining the hyperparameters of a one-class LS-SVM with Gaussian kernels which exploits the efficient LOO error calculation. The standard deviations are selected by prior knowledge while the regularization parameter is optimized in order to obtain a tight decision boundary under the constraint of a zero LOO error.