带反馈控制的单物种阶段结构系统动力学行为

Liyun Lai, Xiangqin Yu, Fengde Chen
{"title":"带反馈控制的单物种阶段结构系统动力学行为","authors":"Liyun Lai, Xiangqin Yu, Fengde Chen","doi":"10.22436/MNS.05.01.01","DOIUrl":null,"url":null,"abstract":"A single species stage structure system with feedback control is proposed and studied in this paper. Local and global stability property of the boundary equilibrium and the positive equilibrium are investigated, respectively. If the original system is globally stable, then we show that the feedback control only change the position of the unique positive equilibrium and retain the stable property. If the original system is extinct, then we show that the system with feedback control is also extinct. Some examples are presented to verify our main results.","PeriodicalId":443718,"journal":{"name":"Mathematics in Natural Science","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic behaviors of a single species stage structure system with feedback control\",\"authors\":\"Liyun Lai, Xiangqin Yu, Fengde Chen\",\"doi\":\"10.22436/MNS.05.01.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A single species stage structure system with feedback control is proposed and studied in this paper. Local and global stability property of the boundary equilibrium and the positive equilibrium are investigated, respectively. If the original system is globally stable, then we show that the feedback control only change the position of the unique positive equilibrium and retain the stable property. If the original system is extinct, then we show that the system with feedback control is also extinct. Some examples are presented to verify our main results.\",\"PeriodicalId\":443718,\"journal\":{\"name\":\"Mathematics in Natural Science\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in Natural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/MNS.05.01.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/MNS.05.01.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出并研究了一种具有反馈控制的单物种阶段结构系统。分别研究了边界平衡和正平衡的局部稳定性和全局稳定性。如果原系统是全局稳定的,那么我们证明了反馈控制只改变唯一正平衡点的位置并保持稳定的性质。如果原系统是绝灭的,那么我们证明了带反馈控制的系统也是绝灭的。给出了一些例子来验证我们的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic behaviors of a single species stage structure system with feedback control
A single species stage structure system with feedback control is proposed and studied in this paper. Local and global stability property of the boundary equilibrium and the positive equilibrium are investigated, respectively. If the original system is globally stable, then we show that the feedback control only change the position of the unique positive equilibrium and retain the stable property. If the original system is extinct, then we show that the system with feedback control is also extinct. Some examples are presented to verify our main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信