剪板机矩形切割问题的约束规划解

S. Polyakovskiy, Peter J. Stuckey
{"title":"剪板机矩形切割问题的约束规划解","authors":"S. Polyakovskiy, Peter J. Stuckey","doi":"10.1609/icaps.v33i1.27213","DOIUrl":null,"url":null,"abstract":"The guillotine rectangular cutting problem deals with a single rectangular plate of raw material and a collection of rectangular items to be cut from the plate. Each item is associated with a profit and a demand. The problem searches for a feasible layout of a subset of items on the plate so as to maximize the total profit of selected items. The guillotine constraint restricts feasible layouts to those that can be obtained via guillotine edge-to-edge cuts that run parallel to an edge of the plate. We propose a novel constraint programming model that is suitable for guillotine cutting with an arbitrary number of stages of alternating horizontal and vertical guillotine cuts. This is an assignment-based model that models guillotine cuts using a constant number of rectangular regions, with some regions allocated to items. It treats the entire plate as a primary region and decides on the guillotine cuts required to split the regions recursively till they produce space for the items. To speed the search, the model explores the strength of cumulative scheduling relaxations of the cutting problem. Our model is a successful alternative to more traditional mixed-integer linear programming (MILP) models. It outperforms a number of state-of-the-art MILPs on a set of small and moderate size benchmark instances and proves optimality for several instances that remain challenging for these MILPs.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Constraint Programming Solution to the Guillotine Rectangular Cutting Problem\",\"authors\":\"S. Polyakovskiy, Peter J. Stuckey\",\"doi\":\"10.1609/icaps.v33i1.27213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The guillotine rectangular cutting problem deals with a single rectangular plate of raw material and a collection of rectangular items to be cut from the plate. Each item is associated with a profit and a demand. The problem searches for a feasible layout of a subset of items on the plate so as to maximize the total profit of selected items. The guillotine constraint restricts feasible layouts to those that can be obtained via guillotine edge-to-edge cuts that run parallel to an edge of the plate. We propose a novel constraint programming model that is suitable for guillotine cutting with an arbitrary number of stages of alternating horizontal and vertical guillotine cuts. This is an assignment-based model that models guillotine cuts using a constant number of rectangular regions, with some regions allocated to items. It treats the entire plate as a primary region and decides on the guillotine cuts required to split the regions recursively till they produce space for the items. To speed the search, the model explores the strength of cumulative scheduling relaxations of the cutting problem. Our model is a successful alternative to more traditional mixed-integer linear programming (MILP) models. It outperforms a number of state-of-the-art MILPs on a set of small and moderate size benchmark instances and proves optimality for several instances that remain challenging for these MILPs.\",\"PeriodicalId\":239898,\"journal\":{\"name\":\"International Conference on Automated Planning and Scheduling\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Automated Planning and Scheduling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icaps.v33i1.27213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v33i1.27213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

剪板机矩形切割问题处理的是单个矩形的原材料板和从该板上切割的一组矩形物品。每个项目都与利润和需求相关联。该问题寻求一组商品在盘子上的可行布局,以使所选商品的总利润最大化。断头台约束将可行的布局限制为可通过平行于板材边缘的断头台边对边切割获得的布局。提出了一种新的约束规划模型,该模型适用于具有任意数量的水平和垂直交替切割阶段的断头台切割。这是一个基于分配的模型,它使用恒定数量的矩形区域对断头台切割进行建模,其中一些区域分配给物品。它将整个盘子视为一个主要区域,并决定将这些区域递归分割的断头台切割,直到它们为项目产生空间。为了加快搜索速度,该模型探索了切割问题的累积调度松弛的强度。我们的模型是更传统的混合整数线性规划(MILP)模型的成功替代方案。它在一组中小型基准实例上的性能优于许多最先进的milp,并证明了对这些milp仍然具有挑战性的几个实例的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Constraint Programming Solution to the Guillotine Rectangular Cutting Problem
The guillotine rectangular cutting problem deals with a single rectangular plate of raw material and a collection of rectangular items to be cut from the plate. Each item is associated with a profit and a demand. The problem searches for a feasible layout of a subset of items on the plate so as to maximize the total profit of selected items. The guillotine constraint restricts feasible layouts to those that can be obtained via guillotine edge-to-edge cuts that run parallel to an edge of the plate. We propose a novel constraint programming model that is suitable for guillotine cutting with an arbitrary number of stages of alternating horizontal and vertical guillotine cuts. This is an assignment-based model that models guillotine cuts using a constant number of rectangular regions, with some regions allocated to items. It treats the entire plate as a primary region and decides on the guillotine cuts required to split the regions recursively till they produce space for the items. To speed the search, the model explores the strength of cumulative scheduling relaxations of the cutting problem. Our model is a successful alternative to more traditional mixed-integer linear programming (MILP) models. It outperforms a number of state-of-the-art MILPs on a set of small and moderate size benchmark instances and proves optimality for several instances that remain challenging for these MILPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信