利用信息论课程学习工厂优化培训

Henok Ghebrechristos, G. Alaghband
{"title":"利用信息论课程学习工厂优化培训","authors":"Henok Ghebrechristos, G. Alaghband","doi":"10.1109/ICTAI.2019.00218","DOIUrl":null,"url":null,"abstract":"We present a new system that can automatically generate input paths (syllabus) for a convolutional neural network to follow through a curriculum learning to improve training performance. Our system utilizes information-theoretic content measures of training samples to form syllabus at training time. We treat every sample as 2D random variable where a data point contained in the sample (such as a pixel) is modelled as an independent and identically distributed random variable (i.i.d) realization. We use several information theory methods to rank and determine when a sample is fed to a network by measuring its pixel composition and its relationship to other samples in the training set. Comparative evaluation of multiple state-of-the-art networks, including, GoogleNet, and VGG, on benchmark datasets demonstrate a syllabus that ranks samples using measures such as Joint Entropy between adjacent samples, can improve learning and significantly reduce the amount of training steps required to achieve desirable training accuracy. We present results that indicate our approach can reduce training loss by as much as a factor of 9 compared to conventional training.","PeriodicalId":346657,"journal":{"name":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimizing Training using Information Theory-Based Curriculum Learning Factory\",\"authors\":\"Henok Ghebrechristos, G. Alaghband\",\"doi\":\"10.1109/ICTAI.2019.00218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new system that can automatically generate input paths (syllabus) for a convolutional neural network to follow through a curriculum learning to improve training performance. Our system utilizes information-theoretic content measures of training samples to form syllabus at training time. We treat every sample as 2D random variable where a data point contained in the sample (such as a pixel) is modelled as an independent and identically distributed random variable (i.i.d) realization. We use several information theory methods to rank and determine when a sample is fed to a network by measuring its pixel composition and its relationship to other samples in the training set. Comparative evaluation of multiple state-of-the-art networks, including, GoogleNet, and VGG, on benchmark datasets demonstrate a syllabus that ranks samples using measures such as Joint Entropy between adjacent samples, can improve learning and significantly reduce the amount of training steps required to achieve desirable training accuracy. We present results that indicate our approach can reduce training loss by as much as a factor of 9 compared to conventional training.\",\"PeriodicalId\":346657,\"journal\":{\"name\":\"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2019.00218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2019.00218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一个新的系统,它可以自动生成输入路径(教学大纲),让卷积神经网络通过课程学习来提高训练性能。本系统利用训练样本的信息论内容测度,在训练时形成教学大纲。我们将每个样本视为二维随机变量,其中样本中包含的数据点(例如像素)被建模为独立且同分布的随机变量(i.i.d)实现。我们使用几种信息论方法通过测量样本的像素组成及其与训练集中其他样本的关系来对样本进行排序和确定何时将样本馈送到网络中。在基准数据集上对多个最先进的网络(包括GoogleNet和VGG)进行比较评估,证明了使用相邻样本之间的联合熵等度量对样本进行排序的教学大纲,可以提高学习效果,并显著减少达到理想训练精度所需的训练步骤。我们提出的结果表明,与传统训练相比,我们的方法可以减少多达9倍的训练损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Training using Information Theory-Based Curriculum Learning Factory
We present a new system that can automatically generate input paths (syllabus) for a convolutional neural network to follow through a curriculum learning to improve training performance. Our system utilizes information-theoretic content measures of training samples to form syllabus at training time. We treat every sample as 2D random variable where a data point contained in the sample (such as a pixel) is modelled as an independent and identically distributed random variable (i.i.d) realization. We use several information theory methods to rank and determine when a sample is fed to a network by measuring its pixel composition and its relationship to other samples in the training set. Comparative evaluation of multiple state-of-the-art networks, including, GoogleNet, and VGG, on benchmark datasets demonstrate a syllabus that ranks samples using measures such as Joint Entropy between adjacent samples, can improve learning and significantly reduce the amount of training steps required to achieve desirable training accuracy. We present results that indicate our approach can reduce training loss by as much as a factor of 9 compared to conventional training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信