用于并行计算基本图模式查询的基于文档的RDF存储方法

Eleftherios Kalogeros, M. Gergatsoulis, M. Damigos
{"title":"用于并行计算基本图模式查询的基于文档的RDF存储方法","authors":"Eleftherios Kalogeros, M. Gergatsoulis, M. Damigos","doi":"10.1504/ijmso.2020.10030007","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the problem of efficiently evaluating (Basic Graph Pattern) BGP SPARQL queries over a large amount of RDF data. We propose an effective data model for storing RDF data in a document database using maximum replication factor of 2 (i.e., in the worst case scenario, the data graph will be doubled in storage size). The proposed storage model is utilised for efficiently evaluating SPARQL queries, in a distributed manner. Each query is decomposed into a set of generalised star queries, which are queries that allow both subject-object and object-subject edges from a specific node, called central node. The proposed data model ensures that no joining operations over multiple data sets are required to evaluate generalised star queries. The results of the evaluation of the generalised star sub-queries of a query Q are then combined properly, in order to compute the answers of the query Q posed over the RDF data. The proposed approach has been implemented using MongoDB and Apache Spark.","PeriodicalId":111629,"journal":{"name":"Int. J. Metadata Semant. Ontologies","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Document-based RDF storage method for parallel evaluation of basic graph pattern queries\",\"authors\":\"Eleftherios Kalogeros, M. Gergatsoulis, M. Damigos\",\"doi\":\"10.1504/ijmso.2020.10030007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the problem of efficiently evaluating (Basic Graph Pattern) BGP SPARQL queries over a large amount of RDF data. We propose an effective data model for storing RDF data in a document database using maximum replication factor of 2 (i.e., in the worst case scenario, the data graph will be doubled in storage size). The proposed storage model is utilised for efficiently evaluating SPARQL queries, in a distributed manner. Each query is decomposed into a set of generalised star queries, which are queries that allow both subject-object and object-subject edges from a specific node, called central node. The proposed data model ensures that no joining operations over multiple data sets are required to evaluate generalised star queries. The results of the evaluation of the generalised star sub-queries of a query Q are then combined properly, in order to compute the answers of the query Q posed over the RDF data. The proposed approach has been implemented using MongoDB and Apache Spark.\",\"PeriodicalId\":111629,\"journal\":{\"name\":\"Int. J. Metadata Semant. Ontologies\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Metadata Semant. Ontologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijmso.2020.10030007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Metadata Semant. Ontologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmso.2020.10030007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们研究了在大量RDF数据上有效评估(基本图模式)BGP SPARQL查询的问题。我们提出了一个有效的数据模型,用于在文档数据库中存储RDF数据,使用最大复制因子2(即,在最坏的情况下,数据图的存储大小将增加一倍)。建议的存储模型用于以分布式方式高效地评估SPARQL查询。每个查询被分解成一组一般化的星型查询,这些查询允许从特定节点(称为中心节点)获得主题-对象和对象-主题边。所建议的数据模型确保不需要对多个数据集进行连接操作来评估广义星型查询。然后将查询Q的广义星型子查询的求值结果适当地组合起来,以便计算对RDF数据提出的查询Q的答案。所提出的方法已经使用MongoDB和Apache Spark实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Document-based RDF storage method for parallel evaluation of basic graph pattern queries
In this paper, we investigate the problem of efficiently evaluating (Basic Graph Pattern) BGP SPARQL queries over a large amount of RDF data. We propose an effective data model for storing RDF data in a document database using maximum replication factor of 2 (i.e., in the worst case scenario, the data graph will be doubled in storage size). The proposed storage model is utilised for efficiently evaluating SPARQL queries, in a distributed manner. Each query is decomposed into a set of generalised star queries, which are queries that allow both subject-object and object-subject edges from a specific node, called central node. The proposed data model ensures that no joining operations over multiple data sets are required to evaluate generalised star queries. The results of the evaluation of the generalised star sub-queries of a query Q are then combined properly, in order to compute the answers of the query Q posed over the RDF data. The proposed approach has been implemented using MongoDB and Apache Spark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信