H. Dushanee, M. Sriyarathne, Zhang Zhang, G. Ruan, K. Harouaka, Wei Li, A. Lu, Guannan Deng, Xin Wang, Yue Zhao, A. Kan, M. Tomson
{"title":"不同温度下Fe(II)/Fe(III)对重晶石阻垢剂的影响","authors":"H. Dushanee, M. Sriyarathne, Zhang Zhang, G. Ruan, K. Harouaka, Wei Li, A. Lu, Guannan Deng, Xin Wang, Yue Zhao, A. Kan, M. Tomson","doi":"10.2118/190735-MS","DOIUrl":null,"url":null,"abstract":"\n This paper discusses research on performance of scale inhibitors in the presence of ferrous ion. Iron ion is the most abundant heavy metal ion in wastewater and oilfield produced water. Fe(II) is the dominant form of iron ion in oil and gas wells due to the downhole high anoxic conditions. Fe(II) can form FeS and FeCO3 which will cause severe problems in production. Further, it is important to thoroughly investigate the inhibitor compatibility with these cations in oilfield as the existence of iron in solution effects on inhibitor chemistry.\n In this research, Fe(II) effect on various scale inhibitors on barite was tested using an improved anoxic testing apparatus along with laser light scattering nucleation detection method. In this newly designed apparatus strict maintenance of anoxic condition is guaranteed by constant argon flow and switch valve to transfer solution. Moreover, the high Fe(II) tolerance concentration for common inhibitors were tested by varying Fe(II) concentrations from 50-100 mg/L at 90°C and near neutral pH conditions. Most scale inhibitors show good Fe(II) tolerance at experimental conditions, while the inhibition performance of phosphonates were significantly impaired by Fe(II). It is proposed that the formation of insoluble precipitates between Fe(II) and phosphonate is very likely the reason behind the observed significant impairment. Further, two methods to reverse the detrimental effect of Fe(II) on barite scale inhibitor performance is investigated and discussed here. First, a most common organic chelating agents used in oilfield, EDTA, was tested for its ability to reverse the detrimental effect of Fe(II) on scale. Secondly, Fe(II)/Inhibitor concentration ratio was changed so that remaining inhibitor in the aqueous phase would conduct the scale inhibition.","PeriodicalId":445983,"journal":{"name":"Day 1 Wed, June 20, 2018","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Fe(II)/Fe(III) Effect on Barite Scale Inhibitors Under Different Temperatures\",\"authors\":\"H. Dushanee, M. Sriyarathne, Zhang Zhang, G. Ruan, K. Harouaka, Wei Li, A. Lu, Guannan Deng, Xin Wang, Yue Zhao, A. Kan, M. Tomson\",\"doi\":\"10.2118/190735-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper discusses research on performance of scale inhibitors in the presence of ferrous ion. Iron ion is the most abundant heavy metal ion in wastewater and oilfield produced water. Fe(II) is the dominant form of iron ion in oil and gas wells due to the downhole high anoxic conditions. Fe(II) can form FeS and FeCO3 which will cause severe problems in production. Further, it is important to thoroughly investigate the inhibitor compatibility with these cations in oilfield as the existence of iron in solution effects on inhibitor chemistry.\\n In this research, Fe(II) effect on various scale inhibitors on barite was tested using an improved anoxic testing apparatus along with laser light scattering nucleation detection method. In this newly designed apparatus strict maintenance of anoxic condition is guaranteed by constant argon flow and switch valve to transfer solution. Moreover, the high Fe(II) tolerance concentration for common inhibitors were tested by varying Fe(II) concentrations from 50-100 mg/L at 90°C and near neutral pH conditions. Most scale inhibitors show good Fe(II) tolerance at experimental conditions, while the inhibition performance of phosphonates were significantly impaired by Fe(II). It is proposed that the formation of insoluble precipitates between Fe(II) and phosphonate is very likely the reason behind the observed significant impairment. Further, two methods to reverse the detrimental effect of Fe(II) on barite scale inhibitor performance is investigated and discussed here. First, a most common organic chelating agents used in oilfield, EDTA, was tested for its ability to reverse the detrimental effect of Fe(II) on scale. Secondly, Fe(II)/Inhibitor concentration ratio was changed so that remaining inhibitor in the aqueous phase would conduct the scale inhibition.\",\"PeriodicalId\":445983,\"journal\":{\"name\":\"Day 1 Wed, June 20, 2018\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Wed, June 20, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/190735-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Wed, June 20, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/190735-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of Fe(II)/Fe(III) Effect on Barite Scale Inhibitors Under Different Temperatures
This paper discusses research on performance of scale inhibitors in the presence of ferrous ion. Iron ion is the most abundant heavy metal ion in wastewater and oilfield produced water. Fe(II) is the dominant form of iron ion in oil and gas wells due to the downhole high anoxic conditions. Fe(II) can form FeS and FeCO3 which will cause severe problems in production. Further, it is important to thoroughly investigate the inhibitor compatibility with these cations in oilfield as the existence of iron in solution effects on inhibitor chemistry.
In this research, Fe(II) effect on various scale inhibitors on barite was tested using an improved anoxic testing apparatus along with laser light scattering nucleation detection method. In this newly designed apparatus strict maintenance of anoxic condition is guaranteed by constant argon flow and switch valve to transfer solution. Moreover, the high Fe(II) tolerance concentration for common inhibitors were tested by varying Fe(II) concentrations from 50-100 mg/L at 90°C and near neutral pH conditions. Most scale inhibitors show good Fe(II) tolerance at experimental conditions, while the inhibition performance of phosphonates were significantly impaired by Fe(II). It is proposed that the formation of insoluble precipitates between Fe(II) and phosphonate is very likely the reason behind the observed significant impairment. Further, two methods to reverse the detrimental effect of Fe(II) on barite scale inhibitor performance is investigated and discussed here. First, a most common organic chelating agents used in oilfield, EDTA, was tested for its ability to reverse the detrimental effect of Fe(II) on scale. Secondly, Fe(II)/Inhibitor concentration ratio was changed so that remaining inhibitor in the aqueous phase would conduct the scale inhibition.