用于推荐特征选择算法的数据集元特征描述

A. Filchenkov, Arseniy Pendryak
{"title":"用于推荐特征选择算法的数据集元特征描述","authors":"A. Filchenkov, Arseniy Pendryak","doi":"10.1109/AINL-ISMW-FRUCT.2015.7382962","DOIUrl":null,"url":null,"abstract":"Meta-learning is an approach for solving the algorithm selection problem, which is how to choose the best algorithm for a certain task. This task corresponds to a dataset in machine learning and data mining. The main challenge in meta-learning is to engineer a meta-feature description for datasets. In the paper we apply meta-learning for feature selection. We found a meta-feature set which showed the best result in predicting proper feature selection algorithms. We also suggested a novel approach to engineer meta-features for data preprocessing algorithms, which is based on estimating the best parametrization of processing algorithms on small subsamples.","PeriodicalId":122232,"journal":{"name":"2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Datasets meta-feature description for recommending feature selection algorithm\",\"authors\":\"A. Filchenkov, Arseniy Pendryak\",\"doi\":\"10.1109/AINL-ISMW-FRUCT.2015.7382962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Meta-learning is an approach for solving the algorithm selection problem, which is how to choose the best algorithm for a certain task. This task corresponds to a dataset in machine learning and data mining. The main challenge in meta-learning is to engineer a meta-feature description for datasets. In the paper we apply meta-learning for feature selection. We found a meta-feature set which showed the best result in predicting proper feature selection algorithms. We also suggested a novel approach to engineer meta-features for data preprocessing algorithms, which is based on estimating the best parametrization of processing algorithms on small subsamples.\",\"PeriodicalId\":122232,\"journal\":{\"name\":\"2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AINL-ISMW-FRUCT.2015.7382962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINL-ISMW-FRUCT.2015.7382962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

元学习是解决算法选择问题的一种方法,即如何为特定的任务选择最佳的算法。该任务对应于机器学习和数据挖掘中的数据集。元学习的主要挑战是为数据集设计一个元特征描述。在本文中,我们将元学习应用于特征选择。我们发现了一个元特征集,它在预测合适的特征选择算法方面显示了最好的结果。我们还提出了一种新的方法来设计数据预处理算法的元特征,该方法基于估计小子样本上处理算法的最佳参数化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Datasets meta-feature description for recommending feature selection algorithm
Meta-learning is an approach for solving the algorithm selection problem, which is how to choose the best algorithm for a certain task. This task corresponds to a dataset in machine learning and data mining. The main challenge in meta-learning is to engineer a meta-feature description for datasets. In the paper we apply meta-learning for feature selection. We found a meta-feature set which showed the best result in predicting proper feature selection algorithms. We also suggested a novel approach to engineer meta-features for data preprocessing algorithms, which is based on estimating the best parametrization of processing algorithms on small subsamples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信