{"title":"用于推荐特征选择算法的数据集元特征描述","authors":"A. Filchenkov, Arseniy Pendryak","doi":"10.1109/AINL-ISMW-FRUCT.2015.7382962","DOIUrl":null,"url":null,"abstract":"Meta-learning is an approach for solving the algorithm selection problem, which is how to choose the best algorithm for a certain task. This task corresponds to a dataset in machine learning and data mining. The main challenge in meta-learning is to engineer a meta-feature description for datasets. In the paper we apply meta-learning for feature selection. We found a meta-feature set which showed the best result in predicting proper feature selection algorithms. We also suggested a novel approach to engineer meta-features for data preprocessing algorithms, which is based on estimating the best parametrization of processing algorithms on small subsamples.","PeriodicalId":122232,"journal":{"name":"2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Datasets meta-feature description for recommending feature selection algorithm\",\"authors\":\"A. Filchenkov, Arseniy Pendryak\",\"doi\":\"10.1109/AINL-ISMW-FRUCT.2015.7382962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Meta-learning is an approach for solving the algorithm selection problem, which is how to choose the best algorithm for a certain task. This task corresponds to a dataset in machine learning and data mining. The main challenge in meta-learning is to engineer a meta-feature description for datasets. In the paper we apply meta-learning for feature selection. We found a meta-feature set which showed the best result in predicting proper feature selection algorithms. We also suggested a novel approach to engineer meta-features for data preprocessing algorithms, which is based on estimating the best parametrization of processing algorithms on small subsamples.\",\"PeriodicalId\":122232,\"journal\":{\"name\":\"2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AINL-ISMW-FRUCT.2015.7382962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference (AINL-ISMW FRUCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINL-ISMW-FRUCT.2015.7382962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Datasets meta-feature description for recommending feature selection algorithm
Meta-learning is an approach for solving the algorithm selection problem, which is how to choose the best algorithm for a certain task. This task corresponds to a dataset in machine learning and data mining. The main challenge in meta-learning is to engineer a meta-feature description for datasets. In the paper we apply meta-learning for feature selection. We found a meta-feature set which showed the best result in predicting proper feature selection algorithms. We also suggested a novel approach to engineer meta-features for data preprocessing algorithms, which is based on estimating the best parametrization of processing algorithms on small subsamples.