{"title":"深度单图像增强器","authors":"M. Lin, Jie Yang, O. Yadid-Pecht","doi":"10.1109/AVSS.2019.8909891","DOIUrl":null,"url":null,"abstract":"Surveillance cameras can be deployed in various environments where lighting conditions are constantly changing. However, due to the limited dynamic range of current image sensors, the captured images are only low dynamic range images that usually suffer from over-exposure and under-exposure situations where important details are lost. Therefore, it is critical to recover the lost details of such images in order to improve visual experience for observers and performance for possible computer vision processing. In this paper, we propose a reformulated Laplacian pyramid and a convolutional neural network (CNN) model to enhance and recover the lost detail of a degraded image. The reformulated Laplacian first decomposes the image into two sub-images that contain global and local image features, respectively. The global features and local features are processed by the proposed CNN model to manipulate the global luminance terrain and enhance local details. The final image is obtained by reconstructing the CNN generated local and global features. Various experiments have been conducted. The results demonstrate that the proposed model outperforms the state-of-the-art methods.","PeriodicalId":243194,"journal":{"name":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Single Image Enhancer\",\"authors\":\"M. Lin, Jie Yang, O. Yadid-Pecht\",\"doi\":\"10.1109/AVSS.2019.8909891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surveillance cameras can be deployed in various environments where lighting conditions are constantly changing. However, due to the limited dynamic range of current image sensors, the captured images are only low dynamic range images that usually suffer from over-exposure and under-exposure situations where important details are lost. Therefore, it is critical to recover the lost details of such images in order to improve visual experience for observers and performance for possible computer vision processing. In this paper, we propose a reformulated Laplacian pyramid and a convolutional neural network (CNN) model to enhance and recover the lost detail of a degraded image. The reformulated Laplacian first decomposes the image into two sub-images that contain global and local image features, respectively. The global features and local features are processed by the proposed CNN model to manipulate the global luminance terrain and enhance local details. The final image is obtained by reconstructing the CNN generated local and global features. Various experiments have been conducted. The results demonstrate that the proposed model outperforms the state-of-the-art methods.\",\"PeriodicalId\":243194,\"journal\":{\"name\":\"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2019.8909891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2019.8909891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surveillance cameras can be deployed in various environments where lighting conditions are constantly changing. However, due to the limited dynamic range of current image sensors, the captured images are only low dynamic range images that usually suffer from over-exposure and under-exposure situations where important details are lost. Therefore, it is critical to recover the lost details of such images in order to improve visual experience for observers and performance for possible computer vision processing. In this paper, we propose a reformulated Laplacian pyramid and a convolutional neural network (CNN) model to enhance and recover the lost detail of a degraded image. The reformulated Laplacian first decomposes the image into two sub-images that contain global and local image features, respectively. The global features and local features are processed by the proposed CNN model to manipulate the global luminance terrain and enhance local details. The final image is obtained by reconstructing the CNN generated local and global features. Various experiments have been conducted. The results demonstrate that the proposed model outperforms the state-of-the-art methods.