深度单图像增强器

M. Lin, Jie Yang, O. Yadid-Pecht
{"title":"深度单图像增强器","authors":"M. Lin, Jie Yang, O. Yadid-Pecht","doi":"10.1109/AVSS.2019.8909891","DOIUrl":null,"url":null,"abstract":"Surveillance cameras can be deployed in various environments where lighting conditions are constantly changing. However, due to the limited dynamic range of current image sensors, the captured images are only low dynamic range images that usually suffer from over-exposure and under-exposure situations where important details are lost. Therefore, it is critical to recover the lost details of such images in order to improve visual experience for observers and performance for possible computer vision processing. In this paper, we propose a reformulated Laplacian pyramid and a convolutional neural network (CNN) model to enhance and recover the lost detail of a degraded image. The reformulated Laplacian first decomposes the image into two sub-images that contain global and local image features, respectively. The global features and local features are processed by the proposed CNN model to manipulate the global luminance terrain and enhance local details. The final image is obtained by reconstructing the CNN generated local and global features. Various experiments have been conducted. The results demonstrate that the proposed model outperforms the state-of-the-art methods.","PeriodicalId":243194,"journal":{"name":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Single Image Enhancer\",\"authors\":\"M. Lin, Jie Yang, O. Yadid-Pecht\",\"doi\":\"10.1109/AVSS.2019.8909891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surveillance cameras can be deployed in various environments where lighting conditions are constantly changing. However, due to the limited dynamic range of current image sensors, the captured images are only low dynamic range images that usually suffer from over-exposure and under-exposure situations where important details are lost. Therefore, it is critical to recover the lost details of such images in order to improve visual experience for observers and performance for possible computer vision processing. In this paper, we propose a reformulated Laplacian pyramid and a convolutional neural network (CNN) model to enhance and recover the lost detail of a degraded image. The reformulated Laplacian first decomposes the image into two sub-images that contain global and local image features, respectively. The global features and local features are processed by the proposed CNN model to manipulate the global luminance terrain and enhance local details. The final image is obtained by reconstructing the CNN generated local and global features. Various experiments have been conducted. The results demonstrate that the proposed model outperforms the state-of-the-art methods.\",\"PeriodicalId\":243194,\"journal\":{\"name\":\"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2019.8909891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2019.8909891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

监控摄像头可以部署在光照条件不断变化的各种环境中。然而,由于当前图像传感器的动态范围有限,捕获的图像只是低动态范围的图像,通常会出现曝光过曝和曝光不足的情况,从而丢失重要的细节。因此,为了改善观察者的视觉体验和可能的计算机视觉处理性能,恢复这些图像丢失的细节是至关重要的。在本文中,我们提出了一个重新表述的拉普拉斯金字塔和卷积神经网络(CNN)模型来增强和恢复退化图像的丢失细节。重构后的拉普拉斯算子首先将图像分解为两个子图像,分别包含全局和局部图像特征。该模型对全局特征和局部特征进行处理,对全局亮度地形进行处理,增强局部细节。对CNN生成的局部特征和全局特征进行重构,得到最终图像。进行了各种各样的实验。结果表明,所提出的模型优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Single Image Enhancer
Surveillance cameras can be deployed in various environments where lighting conditions are constantly changing. However, due to the limited dynamic range of current image sensors, the captured images are only low dynamic range images that usually suffer from over-exposure and under-exposure situations where important details are lost. Therefore, it is critical to recover the lost details of such images in order to improve visual experience for observers and performance for possible computer vision processing. In this paper, we propose a reformulated Laplacian pyramid and a convolutional neural network (CNN) model to enhance and recover the lost detail of a degraded image. The reformulated Laplacian first decomposes the image into two sub-images that contain global and local image features, respectively. The global features and local features are processed by the proposed CNN model to manipulate the global luminance terrain and enhance local details. The final image is obtained by reconstructing the CNN generated local and global features. Various experiments have been conducted. The results demonstrate that the proposed model outperforms the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信