{"title":"完备三部图与完备三部图不同积中的生成树数目","authors":"S. N. Daoud","doi":"10.1155/2014/965105","DOIUrl":null,"url":null,"abstract":"Spanning trees have been found to be structures of paramount importance in both theoretical and practical problems. In this paper we derive new formulas for the complexity, number of spanning trees, of some products of complete and complete bipartite graphs such as Cartesian product, normal product, composition product, tensor product, symmetric product, and strong sum, using linear algebra and matrix theory techniques.","PeriodicalId":378960,"journal":{"name":"Ars Comb.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Number of Spanning trees in Different Products of Complete and Complete Tripartite Graphs\",\"authors\":\"S. N. Daoud\",\"doi\":\"10.1155/2014/965105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spanning trees have been found to be structures of paramount importance in both theoretical and practical problems. In this paper we derive new formulas for the complexity, number of spanning trees, of some products of complete and complete bipartite graphs such as Cartesian product, normal product, composition product, tensor product, symmetric product, and strong sum, using linear algebra and matrix theory techniques.\",\"PeriodicalId\":378960,\"journal\":{\"name\":\"Ars Comb.\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Comb.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/965105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Comb.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/965105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Number of Spanning trees in Different Products of Complete and Complete Tripartite Graphs
Spanning trees have been found to be structures of paramount importance in both theoretical and practical problems. In this paper we derive new formulas for the complexity, number of spanning trees, of some products of complete and complete bipartite graphs such as Cartesian product, normal product, composition product, tensor product, symmetric product, and strong sum, using linear algebra and matrix theory techniques.