利用遗传程序检测电子交易中的欺诈行为

Carlos A. S. Assis, A. Pereira, Marconi de Arruda Pereira, E. G. Carrano
{"title":"利用遗传程序检测电子交易中的欺诈行为","authors":"Carlos A. S. Assis, A. Pereira, Marconi de Arruda Pereira, E. G. Carrano","doi":"10.1145/2526188.2526221","DOIUrl":null,"url":null,"abstract":"The volume of online transactions has raised a lot in last years, mainly due to the popularization of e-commerce, such as Web retailers. We also observe a significant increase in the number of fraud cases, resulting in billions of dollars losses each year worldwide. Therefore it is important and necessary to developed and apply techniques that can assist in fraud detection, which motivates our research. This work proposes the use of Genetic Programming (GP), an Evolutionary Computation approach, to model and detect fraud (charge back) in electronic transactions, more specifically in credit card operations. In order to evaluate the technique, we perform a case study using an actual dataset of the most popular Brazilian electronic payment service, called UOL PagSeguro. Our results show good performance in fraud detection, presenting gains up to 17.72% percent compared to the baseline, which is the actual scenario of the corporation.","PeriodicalId":114454,"journal":{"name":"Brazilian Symposium on Multimedia and the Web","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Using genetic programming to detect fraud in electronic transactions\",\"authors\":\"Carlos A. S. Assis, A. Pereira, Marconi de Arruda Pereira, E. G. Carrano\",\"doi\":\"10.1145/2526188.2526221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The volume of online transactions has raised a lot in last years, mainly due to the popularization of e-commerce, such as Web retailers. We also observe a significant increase in the number of fraud cases, resulting in billions of dollars losses each year worldwide. Therefore it is important and necessary to developed and apply techniques that can assist in fraud detection, which motivates our research. This work proposes the use of Genetic Programming (GP), an Evolutionary Computation approach, to model and detect fraud (charge back) in electronic transactions, more specifically in credit card operations. In order to evaluate the technique, we perform a case study using an actual dataset of the most popular Brazilian electronic payment service, called UOL PagSeguro. Our results show good performance in fraud detection, presenting gains up to 17.72% percent compared to the baseline, which is the actual scenario of the corporation.\",\"PeriodicalId\":114454,\"journal\":{\"name\":\"Brazilian Symposium on Multimedia and the Web\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Symposium on Multimedia and the Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2526188.2526221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Symposium on Multimedia and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2526188.2526221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在过去的几年里,网上交易的数量增加了很多,这主要是由于电子商务的普及,比如网络零售商。我们还观察到欺诈案件的数量显著增加,每年在全球造成数十亿美元的损失。因此,开发和应用可以帮助欺诈检测的技术是重要和必要的,这激发了我们的研究。这项工作提出使用遗传规划(GP),一种进化计算方法,来模拟和检测电子交易中的欺诈(退款),更具体地说,在信用卡操作中。为了评估该技术,我们使用最受欢迎的巴西电子支付服务UOL PagSeguro的实际数据集进行了案例研究。我们的结果显示,在欺诈检测方面表现良好,与基线相比,收益高达17.72%,这是公司的实际情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using genetic programming to detect fraud in electronic transactions
The volume of online transactions has raised a lot in last years, mainly due to the popularization of e-commerce, such as Web retailers. We also observe a significant increase in the number of fraud cases, resulting in billions of dollars losses each year worldwide. Therefore it is important and necessary to developed and apply techniques that can assist in fraud detection, which motivates our research. This work proposes the use of Genetic Programming (GP), an Evolutionary Computation approach, to model and detect fraud (charge back) in electronic transactions, more specifically in credit card operations. In order to evaluate the technique, we perform a case study using an actual dataset of the most popular Brazilian electronic payment service, called UOL PagSeguro. Our results show good performance in fraud detection, presenting gains up to 17.72% percent compared to the baseline, which is the actual scenario of the corporation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信