偏心轴X-C连杆磨削圆度误差的耦合补偿控制

B. Peng, Weihua Li
{"title":"偏心轴X-C连杆磨削圆度误差的耦合补偿控制","authors":"B. Peng, Weihua Li","doi":"10.1109/ICMCCE.2018.00060","DOIUrl":null,"url":null,"abstract":"As one of the important parts of RV reducer, high precision eccentric shaft has been machined by X-C linkage grinding. The grinding mechanism of eccentric shaft X-C linkage is analyzed for improving the machining accuracy; the roundness error of eccentric shaft and the X and C axis compensation gains calculation method are proposed. The coupling compensation control scheme of roundness error is designed based on the prediction characteristics of feed-forward control. The X-C grinding simulation model of the eccentric shaft is established. Comparison with conventional machining, the feed-forward coupling compensation control designed in this paper, can effectively improve the roundness accuracy of eccentric axis X-C linkage grinding.","PeriodicalId":198834,"journal":{"name":"2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Roundness Error's Coupling Compensation Control in Eccentric Shaft X-C Linkage Grinding\",\"authors\":\"B. Peng, Weihua Li\",\"doi\":\"10.1109/ICMCCE.2018.00060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one of the important parts of RV reducer, high precision eccentric shaft has been machined by X-C linkage grinding. The grinding mechanism of eccentric shaft X-C linkage is analyzed for improving the machining accuracy; the roundness error of eccentric shaft and the X and C axis compensation gains calculation method are proposed. The coupling compensation control scheme of roundness error is designed based on the prediction characteristics of feed-forward control. The X-C grinding simulation model of the eccentric shaft is established. Comparison with conventional machining, the feed-forward coupling compensation control designed in this paper, can effectively improve the roundness accuracy of eccentric axis X-C linkage grinding.\",\"PeriodicalId\":198834,\"journal\":{\"name\":\"2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMCCE.2018.00060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMCCE.2018.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

作为RV减速器的重要部件之一,高精度偏心轴采用X-C联动磨削加工。分析了偏心轴X-C连杆机构的磨削机理,提高了加工精度;提出了偏心轴圆度误差和X、C轴补偿增益的计算方法。根据前馈控制的预测特性,设计了圆度误差的耦合补偿控制方案。建立了偏心轴的X-C磨削仿真模型。与常规加工相比,本文设计的前馈耦合补偿控制能有效提高偏心轴X-C连杆机构磨削圆度精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Roundness Error's Coupling Compensation Control in Eccentric Shaft X-C Linkage Grinding
As one of the important parts of RV reducer, high precision eccentric shaft has been machined by X-C linkage grinding. The grinding mechanism of eccentric shaft X-C linkage is analyzed for improving the machining accuracy; the roundness error of eccentric shaft and the X and C axis compensation gains calculation method are proposed. The coupling compensation control scheme of roundness error is designed based on the prediction characteristics of feed-forward control. The X-C grinding simulation model of the eccentric shaft is established. Comparison with conventional machining, the feed-forward coupling compensation control designed in this paper, can effectively improve the roundness accuracy of eccentric axis X-C linkage grinding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信