入侵检测的无监督学习算法

S. Zanero, G. Serazzi
{"title":"入侵检测的无监督学习算法","authors":"S. Zanero, G. Serazzi","doi":"10.1109/NOMS.2008.4575276","DOIUrl":null,"url":null,"abstract":"This work summarizes our research on the topic of the application of unsupervised learning algorithms to the problem of intrusion detection, and in particular our main research results in network intrusion detection. We proposed a novel, two tier architecture for network intrusion detection, capable of clustering packet payloads and correlating anomalies in the packet stream. We show the experiments we conducted on such architecture, we give performance results, and we compare our achievements with other comparable existing systems.","PeriodicalId":368139,"journal":{"name":"NOMS 2008 - 2008 IEEE Network Operations and Management Symposium","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Unsupervised learning algorithms for intrusion detection\",\"authors\":\"S. Zanero, G. Serazzi\",\"doi\":\"10.1109/NOMS.2008.4575276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work summarizes our research on the topic of the application of unsupervised learning algorithms to the problem of intrusion detection, and in particular our main research results in network intrusion detection. We proposed a novel, two tier architecture for network intrusion detection, capable of clustering packet payloads and correlating anomalies in the packet stream. We show the experiments we conducted on such architecture, we give performance results, and we compare our achievements with other comparable existing systems.\",\"PeriodicalId\":368139,\"journal\":{\"name\":\"NOMS 2008 - 2008 IEEE Network Operations and Management Symposium\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NOMS 2008 - 2008 IEEE Network Operations and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NOMS.2008.4575276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOMS 2008 - 2008 IEEE Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOMS.2008.4575276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

本工作总结了我们在无监督学习算法在入侵检测问题中的应用这一主题上的研究,特别是我们在网络入侵检测方面的主要研究成果。我们提出了一种新颖的两层网络入侵检测体系结构,能够对数据包有效负载进行聚类并关联数据包流中的异常。我们展示了我们在这种架构上进行的实验,给出了性能结果,并将我们的成果与其他可比较的现有系统进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised learning algorithms for intrusion detection
This work summarizes our research on the topic of the application of unsupervised learning algorithms to the problem of intrusion detection, and in particular our main research results in network intrusion detection. We proposed a novel, two tier architecture for network intrusion detection, capable of clustering packet payloads and correlating anomalies in the packet stream. We show the experiments we conducted on such architecture, we give performance results, and we compare our achievements with other comparable existing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信