基于神经网络的声纳系统在鱼类分类中的潜力

P. Patrick, N. Ramani, W.G. Hanson, H. Anderson
{"title":"基于神经网络的声纳系统在鱼类分类中的潜力","authors":"P. Patrick, N. Ramani, W.G. Hanson, H. Anderson","doi":"10.1109/ICNN.1991.163352","DOIUrl":null,"url":null,"abstract":"The authors explore the potential of a neural network based system for detecting and classifying fish from sonar echo returns. Preliminary results are encouraging; a simple neural network was able to identify up to 86% of the test samples. When the identification problem was divided into three subproblems, over 93% of the samples were identified correctly. This success rate was found to be superior to both discriminant analysis and nearest neighbor techniques. Future research activities are discussed.<<ETX>>","PeriodicalId":296300,"journal":{"name":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The potential of a neural network based sonar system in classifying fish\",\"authors\":\"P. Patrick, N. Ramani, W.G. Hanson, H. Anderson\",\"doi\":\"10.1109/ICNN.1991.163352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors explore the potential of a neural network based system for detecting and classifying fish from sonar echo returns. Preliminary results are encouraging; a simple neural network was able to identify up to 86% of the test samples. When the identification problem was divided into three subproblems, over 93% of the samples were identified correctly. This success rate was found to be superior to both discriminant analysis and nearest neighbor techniques. Future research activities are discussed.<<ETX>>\",\"PeriodicalId\":296300,\"journal\":{\"name\":\"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1991.163352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1991.163352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

作者探索了一种基于神经网络的系统的潜力,用于从声纳回波中检测和分类鱼类。初步结果令人鼓舞;一个简单的神经网络能够识别多达86%的测试样本。当识别问题被分成三个子问题时,超过93%的样本被正确识别。这种成功率被发现优于判别分析和最近邻技术。讨论了今后的研究工作
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The potential of a neural network based sonar system in classifying fish
The authors explore the potential of a neural network based system for detecting and classifying fish from sonar echo returns. Preliminary results are encouraging; a simple neural network was able to identify up to 86% of the test samples. When the identification problem was divided into three subproblems, over 93% of the samples were identified correctly. This success rate was found to be superior to both discriminant analysis and nearest neighbor techniques. Future research activities are discussed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信