基于非线性流形检测技术的软件缺陷预测基准测试框架

Soumi Ghosh, A. Rana, Vineet Kansal
{"title":"基于非线性流形检测技术的软件缺陷预测基准测试框架","authors":"Soumi Ghosh, A. Rana, Vineet Kansal","doi":"10.1504/ijcse.2020.10028623","DOIUrl":null,"url":null,"abstract":"Prediction of software defects in time improves quality and helps in locating the defect-prone areas accurately. Although earlier considerable methods were applied, actually none of those measures was found to be fool-proof and accurate. Hence, a newer framework includes nonlinear manifold detection model, and its algorithm originated for defect prediction using different techniques of nonlinear manifold detection (nonlinear MDs) along with 14 different machine learning techniques (MLTs) on eight defective software datasets. A critical analysis cum exhaustive comparative estimation revealed that nonlinear manifold detection model has a more accurate and effective impact on defect prediction as compared to feature selection techniques. The outcome of the experiment was statistically tested by Friedman and post hoc analysis using Nemenyi test, which validates that hidden Markov model (HMM) along with nonlinear manifold detection model outperforms and is significantly different from MLTs.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"A benchmarking framework using nonlinear manifold detection techniques for software defect prediction\",\"authors\":\"Soumi Ghosh, A. Rana, Vineet Kansal\",\"doi\":\"10.1504/ijcse.2020.10028623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of software defects in time improves quality and helps in locating the defect-prone areas accurately. Although earlier considerable methods were applied, actually none of those measures was found to be fool-proof and accurate. Hence, a newer framework includes nonlinear manifold detection model, and its algorithm originated for defect prediction using different techniques of nonlinear manifold detection (nonlinear MDs) along with 14 different machine learning techniques (MLTs) on eight defective software datasets. A critical analysis cum exhaustive comparative estimation revealed that nonlinear manifold detection model has a more accurate and effective impact on defect prediction as compared to feature selection techniques. The outcome of the experiment was statistically tested by Friedman and post hoc analysis using Nemenyi test, which validates that hidden Markov model (HMM) along with nonlinear manifold detection model outperforms and is significantly different from MLTs.\",\"PeriodicalId\":340410,\"journal\":{\"name\":\"Int. J. Comput. Sci. Eng.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcse.2020.10028623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcse.2020.10028623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

及时预测软件缺陷可以提高质量,并有助于准确定位容易出现缺陷的区域。虽然以前采用了相当多的方法,但实际上没有一种措施是万无一失和准确的。因此,一个新的框架包括非线性流形检测模型,其算法源于使用不同的非线性流形检测技术(非线性MDs)以及14种不同的机器学习技术(mlt)对8个缺陷软件数据集的缺陷预测。关键分析和详尽的比较估计表明,与特征选择技术相比,非线性流形检测模型对缺陷预测具有更准确和有效的影响。实验结果由Friedman进行统计检验,并利用Nemenyi检验进行事后分析,验证了隐马尔可夫模型(HMM)和非线性流形检测模型优于mlt,并显著不同于mlt。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A benchmarking framework using nonlinear manifold detection techniques for software defect prediction
Prediction of software defects in time improves quality and helps in locating the defect-prone areas accurately. Although earlier considerable methods were applied, actually none of those measures was found to be fool-proof and accurate. Hence, a newer framework includes nonlinear manifold detection model, and its algorithm originated for defect prediction using different techniques of nonlinear manifold detection (nonlinear MDs) along with 14 different machine learning techniques (MLTs) on eight defective software datasets. A critical analysis cum exhaustive comparative estimation revealed that nonlinear manifold detection model has a more accurate and effective impact on defect prediction as compared to feature selection techniques. The outcome of the experiment was statistically tested by Friedman and post hoc analysis using Nemenyi test, which validates that hidden Markov model (HMM) along with nonlinear manifold detection model outperforms and is significantly different from MLTs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信