矩阵符号算法在信号子空间中的应用

M. Hasan, Jiann-Shiou Yang, J. Hasan
{"title":"矩阵符号算法在信号子空间中的应用","authors":"M. Hasan, Jiann-Shiou Yang, J. Hasan","doi":"10.1109/ACC.1999.786464","DOIUrl":null,"url":null,"abstract":"Algorithms for computing the matrix sign function of nonsingular matrices are developed. These algorithms are used to estimate the signal and noise subspaces of the sample covariance matrix when a threshold which separates signal and noise eigenvalues is available. The computed subspaces are then utilized to develop high resolution methods such as MUSIC (multiple signal classification) and ESPRIT (estimation of signal parameters via rotational invariance techniques) for sinusoidal frequency and direction of arrival (DOA) problems. The main features of these algorithms are that they are stable and can be used to generate subspaces that are parameterized by the signal-to-noise ratio (SNR). Additionally, significant computational saving will be obtained due to the fast convergence of some of these iterations. Simulations showing the performance of these methods are also presented.","PeriodicalId":441363,"journal":{"name":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix sign algorithms for signal subspace applications\",\"authors\":\"M. Hasan, Jiann-Shiou Yang, J. Hasan\",\"doi\":\"10.1109/ACC.1999.786464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithms for computing the matrix sign function of nonsingular matrices are developed. These algorithms are used to estimate the signal and noise subspaces of the sample covariance matrix when a threshold which separates signal and noise eigenvalues is available. The computed subspaces are then utilized to develop high resolution methods such as MUSIC (multiple signal classification) and ESPRIT (estimation of signal parameters via rotational invariance techniques) for sinusoidal frequency and direction of arrival (DOA) problems. The main features of these algorithms are that they are stable and can be used to generate subspaces that are parameterized by the signal-to-noise ratio (SNR). Additionally, significant computational saving will be obtained due to the fast convergence of some of these iterations. Simulations showing the performance of these methods are also presented.\",\"PeriodicalId\":441363,\"journal\":{\"name\":\"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)\",\"volume\":\"162 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.1999.786464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1999.786464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了计算非奇异矩阵的矩阵符号函数的算法。这些算法用于在分离信号和噪声特征值的阈值可用时估计样本协方差矩阵的信号和噪声子空间。然后利用计算的子空间开发高分辨率方法,如MUSIC(多信号分类)和ESPRIT(通过旋转不变性技术估计信号参数),用于正弦频率和到达方向(DOA)问题。这些算法的主要特点是它们是稳定的,并且可以用来生成由信噪比(SNR)参数化的子空间。此外,由于其中一些迭代的快速收敛,将获得显著的计算节省。仿真结果表明了这些方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix sign algorithms for signal subspace applications
Algorithms for computing the matrix sign function of nonsingular matrices are developed. These algorithms are used to estimate the signal and noise subspaces of the sample covariance matrix when a threshold which separates signal and noise eigenvalues is available. The computed subspaces are then utilized to develop high resolution methods such as MUSIC (multiple signal classification) and ESPRIT (estimation of signal parameters via rotational invariance techniques) for sinusoidal frequency and direction of arrival (DOA) problems. The main features of these algorithms are that they are stable and can be used to generate subspaces that are parameterized by the signal-to-noise ratio (SNR). Additionally, significant computational saving will be obtained due to the fast convergence of some of these iterations. Simulations showing the performance of these methods are also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信