基于EKF的移动机器人定位

Ling Chen, Huosheng Hu, K. Mcdonald-Maier
{"title":"基于EKF的移动机器人定位","authors":"Ling Chen, Huosheng Hu, K. Mcdonald-Maier","doi":"10.1109/EST.2012.19","DOIUrl":null,"url":null,"abstract":"Localization plays a significant role in the autonomous navigation of a mobile robot. This paper investigates mobile robot localization based on Extended Kalman Filter(EKF) algorithm and a feature based map. Corner angles in the environment are detected as the features, and the detailed processes of feature extraction are described. Then the motion model and odometry information are elaborated, and the EKF localization algorithm is presented. Finally, the experimental result is given to verify the feasibility and performance of the proposed localization algorithm.","PeriodicalId":314247,"journal":{"name":"2012 Third International Conference on Emerging Security Technologies","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"EKF Based Mobile Robot Localization\",\"authors\":\"Ling Chen, Huosheng Hu, K. Mcdonald-Maier\",\"doi\":\"10.1109/EST.2012.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Localization plays a significant role in the autonomous navigation of a mobile robot. This paper investigates mobile robot localization based on Extended Kalman Filter(EKF) algorithm and a feature based map. Corner angles in the environment are detected as the features, and the detailed processes of feature extraction are described. Then the motion model and odometry information are elaborated, and the EKF localization algorithm is presented. Finally, the experimental result is given to verify the feasibility and performance of the proposed localization algorithm.\",\"PeriodicalId\":314247,\"journal\":{\"name\":\"2012 Third International Conference on Emerging Security Technologies\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third International Conference on Emerging Security Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EST.2012.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Emerging Security Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EST.2012.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

定位在移动机器人的自主导航中起着至关重要的作用。研究了基于扩展卡尔曼滤波(EKF)算法和特征地图的移动机器人定位问题。将环境中的角作为特征进行检测,并详细描述了特征提取的过程。然后阐述了运动模型和里程计信息,提出了EKF定位算法。最后给出了实验结果,验证了所提出的定位算法的可行性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EKF Based Mobile Robot Localization
Localization plays a significant role in the autonomous navigation of a mobile robot. This paper investigates mobile robot localization based on Extended Kalman Filter(EKF) algorithm and a feature based map. Corner angles in the environment are detected as the features, and the detailed processes of feature extraction are described. Then the motion model and odometry information are elaborated, and the EKF localization algorithm is presented. Finally, the experimental result is given to verify the feasibility and performance of the proposed localization algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信