情绪识别与信号分类:一项最新研究

R. Fathalla, W. Al-Shehri
{"title":"情绪识别与信号分类:一项最新研究","authors":"R. Fathalla, W. Al-Shehri","doi":"10.4018/ijse.2020010101","DOIUrl":null,"url":null,"abstract":"Affective computing aims to create smart systems able to interact emotionally with users. For effective affective computing experiences, emotions should be detected accurately. The emotion influences appear in all the modalities of humans, such as the facial expression, voice, and body language, as well as in the different bio-parameters of the agents, such as the electro-dermal activity (EDA), the respiration patterns, the skin conductance, and the temperature as well as the brainwaves, which is called electroencephalography (EEG). This review provides an overview of the emotion recognition process, its methodology, and methods. It also explains the EEG-based emotion recognition as an example of emotion recognition methods demonstrating the required steps starting from capturing the EEG signals during the emotion elicitation process, then feature extraction using different techniques, such as empirical mode decomposition technique (EMD) and variational mode decomposition technique (VMD). Finally, emotion classification using different classifiers including the support vector machine (SVM) and deep neural network (DNN) is also highlighted.","PeriodicalId":272943,"journal":{"name":"Int. J. Synth. Emot.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Emotions Recognition and Signal Classification: A State-of-the-Art\",\"authors\":\"R. Fathalla, W. Al-Shehri\",\"doi\":\"10.4018/ijse.2020010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Affective computing aims to create smart systems able to interact emotionally with users. For effective affective computing experiences, emotions should be detected accurately. The emotion influences appear in all the modalities of humans, such as the facial expression, voice, and body language, as well as in the different bio-parameters of the agents, such as the electro-dermal activity (EDA), the respiration patterns, the skin conductance, and the temperature as well as the brainwaves, which is called electroencephalography (EEG). This review provides an overview of the emotion recognition process, its methodology, and methods. It also explains the EEG-based emotion recognition as an example of emotion recognition methods demonstrating the required steps starting from capturing the EEG signals during the emotion elicitation process, then feature extraction using different techniques, such as empirical mode decomposition technique (EMD) and variational mode decomposition technique (VMD). Finally, emotion classification using different classifiers including the support vector machine (SVM) and deep neural network (DNN) is also highlighted.\",\"PeriodicalId\":272943,\"journal\":{\"name\":\"Int. J. Synth. Emot.\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Synth. Emot.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijse.2020010101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Synth. Emot.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijse.2020010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

情感计算旨在创建能够与用户进行情感交互的智能系统。为了获得有效的情感计算体验,应该准确地检测情绪。情感影响出现在人类的所有形态中,如面部表情、声音和肢体语言,以及在不同的生物参数中,如皮肤电活动(EDA)、呼吸模式、皮肤电导、温度以及脑电波,这被称为脑电图(EEG)。本文综述了情绪识别的过程、方法和方法。它还解释了基于脑电图的情感识别作为情感识别方法的一个例子,展示了在情感激发过程中从捕获脑电图信号开始的必要步骤,然后使用不同的技术提取特征,如经验模式分解技术(EMD)和变分模式分解技术(VMD)。最后,重点介绍了使用支持向量机(SVM)和深度神经网络(DNN)等不同分类器进行情感分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emotions Recognition and Signal Classification: A State-of-the-Art
Affective computing aims to create smart systems able to interact emotionally with users. For effective affective computing experiences, emotions should be detected accurately. The emotion influences appear in all the modalities of humans, such as the facial expression, voice, and body language, as well as in the different bio-parameters of the agents, such as the electro-dermal activity (EDA), the respiration patterns, the skin conductance, and the temperature as well as the brainwaves, which is called electroencephalography (EEG). This review provides an overview of the emotion recognition process, its methodology, and methods. It also explains the EEG-based emotion recognition as an example of emotion recognition methods demonstrating the required steps starting from capturing the EEG signals during the emotion elicitation process, then feature extraction using different techniques, such as empirical mode decomposition technique (EMD) and variational mode decomposition technique (VMD). Finally, emotion classification using different classifiers including the support vector machine (SVM) and deep neural network (DNN) is also highlighted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信