变换图像恢复问题的稀疏卷积矩阵构造

Stanley H. Chan
{"title":"变换图像恢复问题的稀疏卷积矩阵构造","authors":"Stanley H. Chan","doi":"10.1109/ICIP.2010.5651989","DOIUrl":null,"url":null,"abstract":"Convolution operator is a linear operator characterized by a point spread functions (PSF). In classical image restoration problems, the blur is usually shift invariant and so the convolution operator can be characterized by one single PSF. This assumption allows one to use fast operations such as Fast Fourier Transform (FFT) to perform a matrix-vector computation efficiently. However, as in most of the video motion deblurring problems, the blur is shift variant and so the matrix-vector multiplication can be difficult to perform. In this paper, we propose an efficient method to construct the convolution matrix explicitly. We exploit the submatrix structure of the convolution matrix and systematically assigning values to the nonzero locations. For small to medium sized images, the convolution matrix gives superior speed than some state-of-art convolution operators.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Constructing a sparse convolution matrix for shift varying image restoration problems\",\"authors\":\"Stanley H. Chan\",\"doi\":\"10.1109/ICIP.2010.5651989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolution operator is a linear operator characterized by a point spread functions (PSF). In classical image restoration problems, the blur is usually shift invariant and so the convolution operator can be characterized by one single PSF. This assumption allows one to use fast operations such as Fast Fourier Transform (FFT) to perform a matrix-vector computation efficiently. However, as in most of the video motion deblurring problems, the blur is shift variant and so the matrix-vector multiplication can be difficult to perform. In this paper, we propose an efficient method to construct the convolution matrix explicitly. We exploit the submatrix structure of the convolution matrix and systematically assigning values to the nonzero locations. For small to medium sized images, the convolution matrix gives superior speed than some state-of-art convolution operators.\",\"PeriodicalId\":228308,\"journal\":{\"name\":\"2010 IEEE International Conference on Image Processing\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2010.5651989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5651989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

卷积算子是一种以点扩展函数(PSF)为特征的线性算子。在经典的图像恢复问题中,模糊通常是平移不变的,因此卷积算子可以用单个PSF来表征。这个假设允许人们使用快速运算,如快速傅立叶变换(FFT)来有效地执行矩阵向量计算。然而,在大多数视频运动去模糊问题中,模糊是移位变量,因此矩阵向量乘法很难执行。本文提出了一种有效的显式构造卷积矩阵的方法。利用卷积矩阵的子矩阵结构,系统地对非零位置赋值。对于小到中等大小的图像,卷积矩阵比一些最先进的卷积算子提供了更高的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing a sparse convolution matrix for shift varying image restoration problems
Convolution operator is a linear operator characterized by a point spread functions (PSF). In classical image restoration problems, the blur is usually shift invariant and so the convolution operator can be characterized by one single PSF. This assumption allows one to use fast operations such as Fast Fourier Transform (FFT) to perform a matrix-vector computation efficiently. However, as in most of the video motion deblurring problems, the blur is shift variant and so the matrix-vector multiplication can be difficult to perform. In this paper, we propose an efficient method to construct the convolution matrix explicitly. We exploit the submatrix structure of the convolution matrix and systematically assigning values to the nonzero locations. For small to medium sized images, the convolution matrix gives superior speed than some state-of-art convolution operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信