有无反馈的二进制状态对称信道容量与传输代价

C. Kourtellaris, C. Charalambous
{"title":"有无反馈的二进制状态对称信道容量与传输代价","authors":"C. Kourtellaris, C. Charalambous","doi":"10.1109/ITW.2015.7133133","DOIUrl":null,"url":null,"abstract":"We consider a unit memory channel, called Binary State Symmetric Channel (BSSC), in which the channel state is the modulo2 addition of the current channel input and the previous channel output. We derive closed form expressions for the capacity and corresponding channel input distribution for the BSSC with and without feedback and transmission cost. We also show that the capacity of the BSSC, with or without feedback, is achieved by a first order symmetric Markov process.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Capacity of Binary State Symmetric Channel with and without feedback and transmission cost\",\"authors\":\"C. Kourtellaris, C. Charalambous\",\"doi\":\"10.1109/ITW.2015.7133133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a unit memory channel, called Binary State Symmetric Channel (BSSC), in which the channel state is the modulo2 addition of the current channel input and the previous channel output. We derive closed form expressions for the capacity and corresponding channel input distribution for the BSSC with and without feedback and transmission cost. We also show that the capacity of the BSSC, with or without feedback, is achieved by a first order symmetric Markov process.\",\"PeriodicalId\":174797,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop (ITW)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2015.7133133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们考虑一个单元存储器通道,称为二进制状态对称通道(BSSC),其中通道状态是当前通道输入和前一个通道输出的模2相加。导出了有反馈和无传输费用时BSSC的容量和相应信道输入分布的封闭表达式。我们还证明了有或没有反馈的BSSC的容量是通过一阶对称马尔可夫过程实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capacity of Binary State Symmetric Channel with and without feedback and transmission cost
We consider a unit memory channel, called Binary State Symmetric Channel (BSSC), in which the channel state is the modulo2 addition of the current channel input and the previous channel output. We derive closed form expressions for the capacity and corresponding channel input distribution for the BSSC with and without feedback and transmission cost. We also show that the capacity of the BSSC, with or without feedback, is achieved by a first order symmetric Markov process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信