{"title":"基于RNS密码体系结构的多故障攻击检测","authors":"J. Bajard, J. Eynard, Nabil Merkiche","doi":"10.1109/ARITH.2016.16","DOIUrl":null,"url":null,"abstract":"Residue Number Systems (RNS) have been a topic of interest for years. Many previous works show that RNS is a good candidate for fast computations in asymmetric cryptography by using its intrinsic parallelization features. A recent result demonstrates that redundant RNS and modular reduction can fit together efficiently, providing an efficient RNS modular reduction algorithm owning a single-fault detection capability. In this paper, we propose to generalize this approach by protecting the classical Cox-Rower architecture against multi-fault attacks. We prove that faults occurring at different places and at different times can be detected with a linear cost for the architecture and a constant time for the execution.","PeriodicalId":145448,"journal":{"name":"2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Multi-fault Attack Detection for RNS Cryptographic Architecture\",\"authors\":\"J. Bajard, J. Eynard, Nabil Merkiche\",\"doi\":\"10.1109/ARITH.2016.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Residue Number Systems (RNS) have been a topic of interest for years. Many previous works show that RNS is a good candidate for fast computations in asymmetric cryptography by using its intrinsic parallelization features. A recent result demonstrates that redundant RNS and modular reduction can fit together efficiently, providing an efficient RNS modular reduction algorithm owning a single-fault detection capability. In this paper, we propose to generalize this approach by protecting the classical Cox-Rower architecture against multi-fault attacks. We prove that faults occurring at different places and at different times can be detected with a linear cost for the architecture and a constant time for the execution.\",\"PeriodicalId\":145448,\"journal\":{\"name\":\"2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.2016.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2016.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-fault Attack Detection for RNS Cryptographic Architecture
Residue Number Systems (RNS) have been a topic of interest for years. Many previous works show that RNS is a good candidate for fast computations in asymmetric cryptography by using its intrinsic parallelization features. A recent result demonstrates that redundant RNS and modular reduction can fit together efficiently, providing an efficient RNS modular reduction algorithm owning a single-fault detection capability. In this paper, we propose to generalize this approach by protecting the classical Cox-Rower architecture against multi-fault attacks. We prove that faults occurring at different places and at different times can be detected with a linear cost for the architecture and a constant time for the execution.