带突变算子的量子粒子群优化

Jing Liu, Wenbo Xu, Jun Sun
{"title":"带突变算子的量子粒子群优化","authors":"Jing Liu, Wenbo Xu, Jun Sun","doi":"10.1109/ICTAI.2005.104","DOIUrl":null,"url":null,"abstract":"The mutation mechanism is introduced into quantum-behaved particle swarm optimization to increase its global search ability and escape from local minima. Based on the characteristic of QPSO algorithm, the variable of gbest and mbest is mutated with Cauchy distribution respectively. The experimental results on test functions show that QPSO with gbest and mbest mutation both performs better than PSO and QPSO without mutation","PeriodicalId":294694,"journal":{"name":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"107","resultStr":"{\"title\":\"Quantum-behaved particle swarm optimization with mutation operator\",\"authors\":\"Jing Liu, Wenbo Xu, Jun Sun\",\"doi\":\"10.1109/ICTAI.2005.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mutation mechanism is introduced into quantum-behaved particle swarm optimization to increase its global search ability and escape from local minima. Based on the characteristic of QPSO algorithm, the variable of gbest and mbest is mutated with Cauchy distribution respectively. The experimental results on test functions show that QPSO with gbest and mbest mutation both performs better than PSO and QPSO without mutation\",\"PeriodicalId\":294694,\"journal\":{\"name\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"107\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2005.104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2005.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 107

摘要

在量子粒子群优化算法中引入突变机制,提高了量子粒子群优化算法的全局搜索能力,避免了局部极小值的影响。根据QPSO算法的特点,对gbest和mbest的变量分别进行柯西分布变异。在测试函数上的实验结果表明,具有gbest和mbest突变的QPSO的性能都优于未发生突变的QPSO和PSO
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum-behaved particle swarm optimization with mutation operator
The mutation mechanism is introduced into quantum-behaved particle swarm optimization to increase its global search ability and escape from local minima. Based on the characteristic of QPSO algorithm, the variable of gbest and mbest is mutated with Cauchy distribution respectively. The experimental results on test functions show that QPSO with gbest and mbest mutation both performs better than PSO and QPSO without mutation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信