稀疏矩阵乘法和连接-聚合查询的并行算法

Xiao Hu, K. Yi
{"title":"稀疏矩阵乘法和连接-聚合查询的并行算法","authors":"Xiao Hu, K. Yi","doi":"10.1145/3375395.3387657","DOIUrl":null,"url":null,"abstract":"In this paper, we design massively parallel algorithms for sparse matrix multiplication, as well as more general join-aggregate queries, where the join hypergraph is a tree with arbitrary output attributes. For each case, we obtain asymptotic improvement over existing algorithms. In particular, our matrix multiplication algorithm is shown to be optimal in the semiring model.","PeriodicalId":412441,"journal":{"name":"Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parallel Algorithms for Sparse Matrix Multiplication and Join-Aggregate Queries\",\"authors\":\"Xiao Hu, K. Yi\",\"doi\":\"10.1145/3375395.3387657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we design massively parallel algorithms for sparse matrix multiplication, as well as more general join-aggregate queries, where the join hypergraph is a tree with arbitrary output attributes. For each case, we obtain asymptotic improvement over existing algorithms. In particular, our matrix multiplication algorithm is shown to be optimal in the semiring model.\",\"PeriodicalId\":412441,\"journal\":{\"name\":\"Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375395.3387657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375395.3387657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们设计了用于稀疏矩阵乘法的大规模并行算法,以及更一般的连接-聚合查询,其中连接超图是具有任意输出属性的树。对于每种情况,我们都得到了对现有算法的渐近改进。特别是,我们的矩阵乘法算法在半环模型中被证明是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Algorithms for Sparse Matrix Multiplication and Join-Aggregate Queries
In this paper, we design massively parallel algorithms for sparse matrix multiplication, as well as more general join-aggregate queries, where the join hypergraph is a tree with arbitrary output attributes. For each case, we obtain asymptotic improvement over existing algorithms. In particular, our matrix multiplication algorithm is shown to be optimal in the semiring model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信