在拥挤的小集团模式的力量

Andrew Drucker, F. Kuhn, R. Oshman
{"title":"在拥挤的小集团模式的力量","authors":"Andrew Drucker, F. Kuhn, R. Oshman","doi":"10.1145/2611462.2611493","DOIUrl":null,"url":null,"abstract":"We study the computation power of the congested clique, a model of distributed computation where n players communicate with each other over a complete network in order to compute some function of their inputs. The number of bits that can be sent on any edge in a round is bounded by a parameter b We consider two versions of the model: in the first, the players communicate by unicast, allowing them to send a different message on each of their links in one round; in the second, the players communicate by broadcast, sending one message to all their neighbors. It is known that the unicast version of the model is quite powerful; to date, no lower bounds for this model are known. In this paper we provide a partial explanation by showing that the unicast congested clique can simulate powerful classes of bounded-depth circuits, implying that even slightly super-constant lower bounds for the congested clique would give new lower bounds in circuit complexity. Moreover, under a widely-believed conjecture on matrix multiplication, the triangle detection problem, studied in [8], can be solved in O(nε) time for any ε > 0. The broadcast version of the congested clique is the well-known multi-party shared-blackboard model of communication complexity (with number-in-hand input). This version is more amenable to lower bounds, and in this paper we show that the subgraph detection problem studied in [8] requires polynomially many rounds for several classes of subgraphs. We also give upper bounds for the subgraph detection problem, and relate the hardness of triangle detection in the broadcast congested clique to the communication complexity of set disjointness in the 3-party number-on-forehead model.","PeriodicalId":186800,"journal":{"name":"Proceedings of the 2014 ACM symposium on Principles of distributed computing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"193","resultStr":"{\"title\":\"On the power of the congested clique model\",\"authors\":\"Andrew Drucker, F. Kuhn, R. Oshman\",\"doi\":\"10.1145/2611462.2611493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the computation power of the congested clique, a model of distributed computation where n players communicate with each other over a complete network in order to compute some function of their inputs. The number of bits that can be sent on any edge in a round is bounded by a parameter b We consider two versions of the model: in the first, the players communicate by unicast, allowing them to send a different message on each of their links in one round; in the second, the players communicate by broadcast, sending one message to all their neighbors. It is known that the unicast version of the model is quite powerful; to date, no lower bounds for this model are known. In this paper we provide a partial explanation by showing that the unicast congested clique can simulate powerful classes of bounded-depth circuits, implying that even slightly super-constant lower bounds for the congested clique would give new lower bounds in circuit complexity. Moreover, under a widely-believed conjecture on matrix multiplication, the triangle detection problem, studied in [8], can be solved in O(nε) time for any ε > 0. The broadcast version of the congested clique is the well-known multi-party shared-blackboard model of communication complexity (with number-in-hand input). This version is more amenable to lower bounds, and in this paper we show that the subgraph detection problem studied in [8] requires polynomially many rounds for several classes of subgraphs. We also give upper bounds for the subgraph detection problem, and relate the hardness of triangle detection in the broadcast congested clique to the communication complexity of set disjointness in the 3-party number-on-forehead model.\",\"PeriodicalId\":186800,\"journal\":{\"name\":\"Proceedings of the 2014 ACM symposium on Principles of distributed computing\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"193\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 ACM symposium on Principles of distributed computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2611462.2611493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM symposium on Principles of distributed computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2611462.2611493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 193

摘要

我们研究了拥塞团的计算能力,这是一种分布式计算模型,其中n个玩家在一个完整的网络上相互通信,以计算他们输入的某些函数。一轮中可以在任何边发送的比特数由参数b限定。我们考虑了模型的两个版本:在第一个版本中,玩家通过单播通信,允许他们在一轮中在每个链路上发送不同的消息;在第二种情况下,玩家通过广播进行交流,向所有邻居发送一条消息。众所周知,该模型的单播版本非常强大;到目前为止,这个模型还没有已知的下限。本文通过证明单播拥塞团可以模拟强大的有界深度电路类给出了部分解释,这意味着即使稍微超常数的拥塞团下界也会给出电路复杂度的新下界。此外,在一个被广泛接受的关于矩阵乘法的猜想下,[8]中所研究的三角形检测问题对于任意ε[8]都可以在O(nε)时间内得到解决。拥塞团的广播版本是众所周知的通信复杂性的多方共享黑板模型(带有数字输入)。这个版本更适合下界,并且在本文中我们证明了[8]中研究的子图检测问题对于几类子图需要多项式多次轮。我们还给出了子图检测问题的上界,并将广播拥塞团中三角形检测的硬度与三方数额模型中集合不相交的通信复杂度联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the power of the congested clique model
We study the computation power of the congested clique, a model of distributed computation where n players communicate with each other over a complete network in order to compute some function of their inputs. The number of bits that can be sent on any edge in a round is bounded by a parameter b We consider two versions of the model: in the first, the players communicate by unicast, allowing them to send a different message on each of their links in one round; in the second, the players communicate by broadcast, sending one message to all their neighbors. It is known that the unicast version of the model is quite powerful; to date, no lower bounds for this model are known. In this paper we provide a partial explanation by showing that the unicast congested clique can simulate powerful classes of bounded-depth circuits, implying that even slightly super-constant lower bounds for the congested clique would give new lower bounds in circuit complexity. Moreover, under a widely-believed conjecture on matrix multiplication, the triangle detection problem, studied in [8], can be solved in O(nε) time for any ε > 0. The broadcast version of the congested clique is the well-known multi-party shared-blackboard model of communication complexity (with number-in-hand input). This version is more amenable to lower bounds, and in this paper we show that the subgraph detection problem studied in [8] requires polynomially many rounds for several classes of subgraphs. We also give upper bounds for the subgraph detection problem, and relate the hardness of triangle detection in the broadcast congested clique to the communication complexity of set disjointness in the 3-party number-on-forehead model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信