Balaji Arun, Sebastiano Peluso, R. Palmieri, Giuliano Losa, B. Ravindran
{"title":"通过快速决策加速达成共识","authors":"Balaji Arun, Sebastiano Peluso, R. Palmieri, Giuliano Losa, B. Ravindran","doi":"10.1109/DSN.2017.35","DOIUrl":null,"url":null,"abstract":"This paper proposes CAESAR, a novel multi-leader Generalized Consensus protocol for geographically replicated sites. The main goal of CAESAR is to overcome one of the major limitations of existing approaches, which is the significant performance degradation when application workload produces conflicting requests. CAESAR does that by changing the way a fast decision is taken: its ordering protocol does not reject a fast decision for a client request if a quorum of nodes reply with different dependency sets for that request. The effectiveness of CAESAR is demonstrated through an evaluation study performed on Amazon's EC2 infrastructure using 5 geo-replicated sites. CAESAR outperforms other multi-leader (e.g., EPaxos) competitors by as much as 1.7x in the presence of 30% conflicting requests, and single-leader (e.g., Multi-Paxos) by up to 3.5x.","PeriodicalId":426928,"journal":{"name":"2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Speeding up Consensus by Chasing Fast Decisions\",\"authors\":\"Balaji Arun, Sebastiano Peluso, R. Palmieri, Giuliano Losa, B. Ravindran\",\"doi\":\"10.1109/DSN.2017.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes CAESAR, a novel multi-leader Generalized Consensus protocol for geographically replicated sites. The main goal of CAESAR is to overcome one of the major limitations of existing approaches, which is the significant performance degradation when application workload produces conflicting requests. CAESAR does that by changing the way a fast decision is taken: its ordering protocol does not reject a fast decision for a client request if a quorum of nodes reply with different dependency sets for that request. The effectiveness of CAESAR is demonstrated through an evaluation study performed on Amazon's EC2 infrastructure using 5 geo-replicated sites. CAESAR outperforms other multi-leader (e.g., EPaxos) competitors by as much as 1.7x in the presence of 30% conflicting requests, and single-leader (e.g., Multi-Paxos) by up to 3.5x.\",\"PeriodicalId\":426928,\"journal\":{\"name\":\"2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSN.2017.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2017.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper proposes CAESAR, a novel multi-leader Generalized Consensus protocol for geographically replicated sites. The main goal of CAESAR is to overcome one of the major limitations of existing approaches, which is the significant performance degradation when application workload produces conflicting requests. CAESAR does that by changing the way a fast decision is taken: its ordering protocol does not reject a fast decision for a client request if a quorum of nodes reply with different dependency sets for that request. The effectiveness of CAESAR is demonstrated through an evaluation study performed on Amazon's EC2 infrastructure using 5 geo-replicated sites. CAESAR outperforms other multi-leader (e.g., EPaxos) competitors by as much as 1.7x in the presence of 30% conflicting requests, and single-leader (e.g., Multi-Paxos) by up to 3.5x.