利用信息准则检测期望最大化聚类过程中的聚类数量

U. Gupta, Vinay Menon, Uday Babbar
{"title":"利用信息准则检测期望最大化聚类过程中的聚类数量","authors":"U. Gupta, Vinay Menon, Uday Babbar","doi":"10.1109/ICMLC.2010.47","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm to automatically determine the number of clusters in a given input data set, under a mixture of Gaussians assumption. Our algorithm extends the Expectation- Maximization clustering approach by starting with a single cluster assumption for the data, and recursively splitting one of the clusters in order to find a tighter fit. An Information Criterion parameter is used to make a selection between the current and previous model after each split. We build this approach upon prior work done on both the K-Means and Expectation-Maximization algorithms. We also present a novel idea for intelligent cluster splitting which minimizes convergence time and substantially improves accuracy.","PeriodicalId":423912,"journal":{"name":"2010 Second International Conference on Machine Learning and Computing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Detecting the Number of Clusters during Expectation-Maximization Clustering Using Information Criterion\",\"authors\":\"U. Gupta, Vinay Menon, Uday Babbar\",\"doi\":\"10.1109/ICMLC.2010.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an algorithm to automatically determine the number of clusters in a given input data set, under a mixture of Gaussians assumption. Our algorithm extends the Expectation- Maximization clustering approach by starting with a single cluster assumption for the data, and recursively splitting one of the clusters in order to find a tighter fit. An Information Criterion parameter is used to make a selection between the current and previous model after each split. We build this approach upon prior work done on both the K-Means and Expectation-Maximization algorithms. We also present a novel idea for intelligent cluster splitting which minimizes convergence time and substantially improves accuracy.\",\"PeriodicalId\":423912,\"journal\":{\"name\":\"2010 Second International Conference on Machine Learning and Computing\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文提出了一种在混合高斯假设下,自动确定给定输入数据集中聚类数目的算法。我们的算法扩展了期望最大化聚类方法,从数据的单个聚类假设开始,并递归地拆分其中一个聚类以找到更紧密的拟合。每次分割后,使用Information Criterion参数在当前模型和以前的模型之间进行选择。我们在先前对K-Means和期望最大化算法所做的工作基础上构建了这种方法。我们还提出了一种新的智能聚类分割思想,使收敛时间最小化并大大提高了准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting the Number of Clusters during Expectation-Maximization Clustering Using Information Criterion
This paper presents an algorithm to automatically determine the number of clusters in a given input data set, under a mixture of Gaussians assumption. Our algorithm extends the Expectation- Maximization clustering approach by starting with a single cluster assumption for the data, and recursively splitting one of the clusters in order to find a tighter fit. An Information Criterion parameter is used to make a selection between the current and previous model after each split. We build this approach upon prior work done on both the K-Means and Expectation-Maximization algorithms. We also present a novel idea for intelligent cluster splitting which minimizes convergence time and substantially improves accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信