关于一些涉及素数因子和完全幂的新的算术函数

Q2 Mathematics
Ovidiu Bagdasar, Ralph Tatt
{"title":"关于一些涉及素数因子和完全幂的新的算术函数","authors":"Ovidiu Bagdasar,&nbsp;Ralph Tatt","doi":"10.1016/j.endm.2018.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>Integer division and perfect powers play a central role in numerous mathematical results, especially in number theory. Classical examples involve perfect squares like in Pythagora's theorem, or higher perfect powers as the conjectures of Fermat (solved in 1994 by A. Wiles [Wiles, A.J., Modular elliptic curves and Fermat's Last Theorem, Annals of Mathematics, 141 (1995), 443–551.]) or Catalan (solved in 2002 by P. Mihăilescu [Mihăilescu, P., Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572 (2004), 167–195.]). The purpose of this paper is two-fold. First, we present some new integer sequences <span><math><mi>a</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, counting the positive integers smaller than <em>n</em>, having a maximal prime factor. We introduce an arithmetic function counting the number of perfect powers <span><math><msup><mrow><mi>i</mi></mrow><mrow><mi>j</mi></mrow></msup></math></span> obtained for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>≤</mo><mi>n</mi></math></span>. Along with some properties of this function, we present the sequence A303748, which was recently added to the Online Encyclopedia of Integer Sequences (OEIS) [The On-Line Encyclopedia of Integer Sequences, <span>http://oeis.org</span><svg><path></path></svg>, OEIS Foundation Inc. 2011.]. Finally, we discuss some other novel integer sequences.</p></div>","PeriodicalId":35408,"journal":{"name":"Electronic Notes in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.endm.2018.11.002","citationCount":"1","resultStr":"{\"title\":\"On some new arithmetic functions involving prime divisors and perfect powers\",\"authors\":\"Ovidiu Bagdasar,&nbsp;Ralph Tatt\",\"doi\":\"10.1016/j.endm.2018.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Integer division and perfect powers play a central role in numerous mathematical results, especially in number theory. Classical examples involve perfect squares like in Pythagora's theorem, or higher perfect powers as the conjectures of Fermat (solved in 1994 by A. Wiles [Wiles, A.J., Modular elliptic curves and Fermat's Last Theorem, Annals of Mathematics, 141 (1995), 443–551.]) or Catalan (solved in 2002 by P. Mihăilescu [Mihăilescu, P., Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572 (2004), 167–195.]). The purpose of this paper is two-fold. First, we present some new integer sequences <span><math><mi>a</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, counting the positive integers smaller than <em>n</em>, having a maximal prime factor. We introduce an arithmetic function counting the number of perfect powers <span><math><msup><mrow><mi>i</mi></mrow><mrow><mi>j</mi></mrow></msup></math></span> obtained for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>≤</mo><mi>n</mi></math></span>. Along with some properties of this function, we present the sequence A303748, which was recently added to the Online Encyclopedia of Integer Sequences (OEIS) [The On-Line Encyclopedia of Integer Sequences, <span>http://oeis.org</span><svg><path></path></svg>, OEIS Foundation Inc. 2011.]. Finally, we discuss some other novel integer sequences.</p></div>\",\"PeriodicalId\":35408,\"journal\":{\"name\":\"Electronic Notes in Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.endm.2018.11.002\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571065318301975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571065318301975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

整数除法和完全幂在许多数学结果中起着中心作用,特别是在数论中。经典的例子包括完全平方,如毕达哥拉斯定理,或更高的完全幂,如费马猜想(1994年由a . Wiles [Wiles, a.j.,模椭圆曲线和费马大定理,数学年鉴,141(1995),443-551 .])或加泰罗尼亚(2002年由P. mihiliilescu [mihiliilescu, P.,初级环切单位和加泰罗尼亚猜想的证明,J. Reine Angew解决)。数学。[j] .生态学报,2004,(5),167-195。本文的目的是双重的。首先,我们给出了一些新的整数序列a(n),计算了小于n的正整数,它们有一个极大素数因子。我们引入一个算术函数,计算1≤i,j≤n时得到的完全幂ij的个数。我们给出了最近被添加到整数序列在线百科全书(OEIS) [the Online Encyclopedia of Integer Sequences, http://oeis.org, OEIS Foundation Inc., 2011.]中的序列A303748以及该函数的一些性质。最后,我们讨论了一些新的整数序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some new arithmetic functions involving prime divisors and perfect powers

Integer division and perfect powers play a central role in numerous mathematical results, especially in number theory. Classical examples involve perfect squares like in Pythagora's theorem, or higher perfect powers as the conjectures of Fermat (solved in 1994 by A. Wiles [Wiles, A.J., Modular elliptic curves and Fermat's Last Theorem, Annals of Mathematics, 141 (1995), 443–551.]) or Catalan (solved in 2002 by P. Mihăilescu [Mihăilescu, P., Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572 (2004), 167–195.]). The purpose of this paper is two-fold. First, we present some new integer sequences a(n), counting the positive integers smaller than n, having a maximal prime factor. We introduce an arithmetic function counting the number of perfect powers ij obtained for 1i,jn. Along with some properties of this function, we present the sequence A303748, which was recently added to the Online Encyclopedia of Integer Sequences (OEIS) [The On-Line Encyclopedia of Integer Sequences, http://oeis.org, OEIS Foundation Inc. 2011.]. Finally, we discuss some other novel integer sequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Notes in Discrete Mathematics
Electronic Notes in Discrete Mathematics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Electronic Notes in Discrete Mathematics is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication is appropriate. Organizers of conferences whose proceedings appear in Electronic Notes in Discrete Mathematics, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信