缓存相干DSM多处理器上的并行排序

H. Shan, Jaswinder Pal Singh
{"title":"缓存相干DSM多处理器上的并行排序","authors":"H. Shan, Jaswinder Pal Singh","doi":"10.1145/331532.331572","DOIUrl":null,"url":null,"abstract":"The performance of parallel sorting is not well understood on hardware cache-coherent shared address space (CC-SAS) multiprocessors, which increasingly dominate the market for tightly-coupled multiprocessing. We study two high-performance parallel sorting algorithms, radix and sample sorting, under three major programming models-a load-store CC-SAS, message passing, and the segmented SHMEM model-on a 64-processor SGI Origin2000. We observe surprisingly good speedups on this demanding application. The performance of radix sort is greatly affected by the programming model and particular implementation used. Sample sort exhibits more uniform performance across programming models on this platform, but it is usually not so good as that of the best radix sort for larger data sets if each is allowed to use the best programming model for itself. The best combination of algorithm and programming model is radix sorting under the SHMEM model for larger data sets and sample sorting under CC-SAS for smaller data sets.","PeriodicalId":354898,"journal":{"name":"ACM/IEEE SC 1999 Conference (SC'99)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Parallel Sorting on Cache-coherent DSM Multiprocessors\",\"authors\":\"H. Shan, Jaswinder Pal Singh\",\"doi\":\"10.1145/331532.331572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of parallel sorting is not well understood on hardware cache-coherent shared address space (CC-SAS) multiprocessors, which increasingly dominate the market for tightly-coupled multiprocessing. We study two high-performance parallel sorting algorithms, radix and sample sorting, under three major programming models-a load-store CC-SAS, message passing, and the segmented SHMEM model-on a 64-processor SGI Origin2000. We observe surprisingly good speedups on this demanding application. The performance of radix sort is greatly affected by the programming model and particular implementation used. Sample sort exhibits more uniform performance across programming models on this platform, but it is usually not so good as that of the best radix sort for larger data sets if each is allowed to use the best programming model for itself. The best combination of algorithm and programming model is radix sorting under the SHMEM model for larger data sets and sample sorting under CC-SAS for smaller data sets.\",\"PeriodicalId\":354898,\"journal\":{\"name\":\"ACM/IEEE SC 1999 Conference (SC'99)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 1999 Conference (SC'99)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/331532.331572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 1999 Conference (SC'99)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/331532.331572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

并行排序在硬件缓存一致共享地址空间(CC-SAS)多处理器上的性能还没有得到很好的理解,而硬件缓存一致共享地址空间(CC-SAS)多处理器正日益主导紧耦合多处理市场。在64处理器的SGI Origin2000上,我们研究了三种主要的编程模型(负载存储CC-SAS、消息传递和分段SHMEM模型)下的两种高性能并行排序算法,基数排序和样本排序。我们在这个要求很高的应用程序上观察到令人惊讶的良好加速。基数排序的性能很大程度上受编程模型和特定实现的影响。在这个平台上,样本排序在编程模型中表现出更加统一的性能,但是如果允许每个模型都为自己使用最佳编程模型,那么对于较大的数据集,它通常不如最佳基数排序那么好。对于较大的数据集,算法和编程模型的最佳组合是SHMEM模型下的基数排序,对于较小的数据集,则是CC-SAS模型下的样本排序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Sorting on Cache-coherent DSM Multiprocessors
The performance of parallel sorting is not well understood on hardware cache-coherent shared address space (CC-SAS) multiprocessors, which increasingly dominate the market for tightly-coupled multiprocessing. We study two high-performance parallel sorting algorithms, radix and sample sorting, under three major programming models-a load-store CC-SAS, message passing, and the segmented SHMEM model-on a 64-processor SGI Origin2000. We observe surprisingly good speedups on this demanding application. The performance of radix sort is greatly affected by the programming model and particular implementation used. Sample sort exhibits more uniform performance across programming models on this platform, but it is usually not so good as that of the best radix sort for larger data sets if each is allowed to use the best programming model for itself. The best combination of algorithm and programming model is radix sorting under the SHMEM model for larger data sets and sample sorting under CC-SAS for smaller data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信