相干非线性发电机响应辨识的仿生优化策略

Eyder K. Cervera, E. Barocio, R. D. Rodriguez-Soto, H. Chamorro
{"title":"相干非线性发电机响应辨识的仿生优化策略","authors":"Eyder K. Cervera, E. Barocio, R. D. Rodriguez-Soto, H. Chamorro","doi":"10.1109/ROPEC55836.2022.10018643","DOIUrl":null,"url":null,"abstract":"Coherency identification is one of the key steps to carrying out different control system strategies to avoid a partial or complete blackout of a power system. However, the oscillatory trends and the non-linear dynamic behaviour of the system measurements in the first seconds of the transient period often mislead the appropriate knowledge of the actual coherent groups, making wide-area coherency monitoring a challenging task. Inspired by swarm behavior in nature, we propose a modified Particle Swarm Optimization (PSO) approach based on centroids codification to identify coherency within a short observation window. A user-defined inter-group function is proposed and compared with conventional intra-group functions to examine the quality of the compacting and separating features of the final clusters. To demonstrate the effectiveness of our technique, we clustered the highly nonlinear dynamic responses of the generators on the 39-bus New England system. A comparison with other clustering methods was carried out to highlight the strength of the proposed algorithm.","PeriodicalId":237392,"journal":{"name":"2022 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-inspired Optimization Strategy for Identify Coherent Nonlinear Generators Response\",\"authors\":\"Eyder K. Cervera, E. Barocio, R. D. Rodriguez-Soto, H. Chamorro\",\"doi\":\"10.1109/ROPEC55836.2022.10018643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coherency identification is one of the key steps to carrying out different control system strategies to avoid a partial or complete blackout of a power system. However, the oscillatory trends and the non-linear dynamic behaviour of the system measurements in the first seconds of the transient period often mislead the appropriate knowledge of the actual coherent groups, making wide-area coherency monitoring a challenging task. Inspired by swarm behavior in nature, we propose a modified Particle Swarm Optimization (PSO) approach based on centroids codification to identify coherency within a short observation window. A user-defined inter-group function is proposed and compared with conventional intra-group functions to examine the quality of the compacting and separating features of the final clusters. To demonstrate the effectiveness of our technique, we clustered the highly nonlinear dynamic responses of the generators on the 39-bus New England system. A comparison with other clustering methods was carried out to highlight the strength of the proposed algorithm.\",\"PeriodicalId\":237392,\"journal\":{\"name\":\"2022 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROPEC55836.2022.10018643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC55836.2022.10018643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一致性识别是实施不同控制策略以避免电力系统部分或完全停电的关键步骤之一。然而,在瞬态的前几秒内,系统测量的振荡趋势和非线性动态行为往往会误导对实际相干群的适当认识,使广域相干监测成为一项具有挑战性的任务。受自然界群体行为的启发,我们提出了一种改进的基于质心编码的粒子群优化(PSO)方法来识别短观测窗口内的相干性。提出了一种自定义的组间函数,并与常规的组内函数进行了比较,以检验最终聚类的压缩和分离特征的质量。为了验证该方法的有效性,我们对39总线新英格兰系统上发电机的高度非线性动态响应进行了聚类。与其他聚类方法进行了比较,以突出所提算法的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bio-inspired Optimization Strategy for Identify Coherent Nonlinear Generators Response
Coherency identification is one of the key steps to carrying out different control system strategies to avoid a partial or complete blackout of a power system. However, the oscillatory trends and the non-linear dynamic behaviour of the system measurements in the first seconds of the transient period often mislead the appropriate knowledge of the actual coherent groups, making wide-area coherency monitoring a challenging task. Inspired by swarm behavior in nature, we propose a modified Particle Swarm Optimization (PSO) approach based on centroids codification to identify coherency within a short observation window. A user-defined inter-group function is proposed and compared with conventional intra-group functions to examine the quality of the compacting and separating features of the final clusters. To demonstrate the effectiveness of our technique, we clustered the highly nonlinear dynamic responses of the generators on the 39-bus New England system. A comparison with other clustering methods was carried out to highlight the strength of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信