球上卡西米尔耗散稳定的随机旋转浅水方程

W. Bauer, Rudiger Brecht
{"title":"球上卡西米尔耗散稳定的随机旋转浅水方程","authors":"W. Bauer, Rudiger Brecht","doi":"10.48550/arXiv.2307.09194","DOIUrl":null,"url":null,"abstract":"We introduce a structure preserving discretization of stochastic rotating shallow water equations, stabilized with an energy conserving Casimir (i.e. potential enstrophy) dissipation. A stabilization of a stochastic scheme is usually required as, by modeling subgrid effects via stochastic processes, small scale features are injected which often lead to noise on the grid scale and numerical instability. Such noise is usually dissipated with a standard diffusion via a Laplacian which necessarily also dissipates energy. In this contribution we study the effects of using an energy preserving selective Casimir dissipation method compared to diffusion via a Laplacian. For both, we analyze stability and accuracy of the stochastic scheme. The results for a test case of a barotropically unstable jet show that Casimir dissipation allows for stable simulations that preserve energy and exhibit more dynamics than comparable runs that use a Laplacian.","PeriodicalId":379504,"journal":{"name":"International Conference on Geometric Science of Information","volume":"abs/2212.10234 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Casimir-dissipation stabilized stochastic rotating shallow water equations on the sphere\",\"authors\":\"W. Bauer, Rudiger Brecht\",\"doi\":\"10.48550/arXiv.2307.09194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a structure preserving discretization of stochastic rotating shallow water equations, stabilized with an energy conserving Casimir (i.e. potential enstrophy) dissipation. A stabilization of a stochastic scheme is usually required as, by modeling subgrid effects via stochastic processes, small scale features are injected which often lead to noise on the grid scale and numerical instability. Such noise is usually dissipated with a standard diffusion via a Laplacian which necessarily also dissipates energy. In this contribution we study the effects of using an energy preserving selective Casimir dissipation method compared to diffusion via a Laplacian. For both, we analyze stability and accuracy of the stochastic scheme. The results for a test case of a barotropically unstable jet show that Casimir dissipation allows for stable simulations that preserve energy and exhibit more dynamics than comparable runs that use a Laplacian.\",\"PeriodicalId\":379504,\"journal\":{\"name\":\"International Conference on Geometric Science of Information\",\"volume\":\"abs/2212.10234 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Geometric Science of Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2307.09194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Geometric Science of Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.09194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一种保持结构的随机旋转浅水方程离散化方法,该方法用守恒能量的卡西米尔耗散(即势熵耗散)稳定。通常需要随机方案的稳定化,因为通过随机过程模拟子网格效应时,会注入小尺度特征,这通常会导致网格尺度上的噪声和数值不稳定。这种噪声通常通过拉普拉斯函数的标准扩散来消散,这必然也会消散能量。在这篇贡献中,我们研究了使用能量守恒的选择性卡西米尔耗散方法与通过拉普拉斯算子扩散的效果。对于这两种情况,我们分析了随机格式的稳定性和准确性。对一个正压不稳定射流的测试结果表明,卡西米尔耗散使得稳定的模拟能够保存能量,并且比使用拉普拉斯的类似运行表现出更多的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Casimir-dissipation stabilized stochastic rotating shallow water equations on the sphere
We introduce a structure preserving discretization of stochastic rotating shallow water equations, stabilized with an energy conserving Casimir (i.e. potential enstrophy) dissipation. A stabilization of a stochastic scheme is usually required as, by modeling subgrid effects via stochastic processes, small scale features are injected which often lead to noise on the grid scale and numerical instability. Such noise is usually dissipated with a standard diffusion via a Laplacian which necessarily also dissipates energy. In this contribution we study the effects of using an energy preserving selective Casimir dissipation method compared to diffusion via a Laplacian. For both, we analyze stability and accuracy of the stochastic scheme. The results for a test case of a barotropically unstable jet show that Casimir dissipation allows for stable simulations that preserve energy and exhibit more dynamics than comparable runs that use a Laplacian.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信