L. R. Celsi, S. Battilotti, Federico Cimorelli, C. Giorgi, S. Monaco, M. Panfili, V. Suraci, F. D. Priscoli
{"title":"基于q学习的认知未来互联网体验质量控制方法","authors":"L. R. Celsi, S. Battilotti, Federico Cimorelli, C. Giorgi, S. Monaco, M. Panfili, V. Suraci, F. D. Priscoli","doi":"10.1109/MED.2015.7158895","DOIUrl":null,"url":null,"abstract":"The paper describes an innovative and fully cognitive approach which offers the opportunity to cope with some key limitations of the present telecommunication networks by means of the introduction of a novel architecture design in the perspective of the emerging Future Internet framework. Within this architecture, the Quality of Experience (QoE) Management functionalities are aimed at approaching the desired QoE level of the applications by dynamically selecting the most appropriate Class of Service supported by the network. In the present work, this selection is driven by an optimal and adaptive control strategy based on the renowned Q-Learning algorithm. The proposed dynamic approach differs from the traffic classification approaches found in the literature, where a static assignment of Classes of Service to applications is performed.","PeriodicalId":316642,"journal":{"name":"2015 23rd Mediterranean Conference on Control and Automation (MED)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Q-Learning based approach to Quality of Experience control in cognitive Future Internet networks\",\"authors\":\"L. R. Celsi, S. Battilotti, Federico Cimorelli, C. Giorgi, S. Monaco, M. Panfili, V. Suraci, F. D. Priscoli\",\"doi\":\"10.1109/MED.2015.7158895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes an innovative and fully cognitive approach which offers the opportunity to cope with some key limitations of the present telecommunication networks by means of the introduction of a novel architecture design in the perspective of the emerging Future Internet framework. Within this architecture, the Quality of Experience (QoE) Management functionalities are aimed at approaching the desired QoE level of the applications by dynamically selecting the most appropriate Class of Service supported by the network. In the present work, this selection is driven by an optimal and adaptive control strategy based on the renowned Q-Learning algorithm. The proposed dynamic approach differs from the traffic classification approaches found in the literature, where a static assignment of Classes of Service to applications is performed.\",\"PeriodicalId\":316642,\"journal\":{\"name\":\"2015 23rd Mediterranean Conference on Control and Automation (MED)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd Mediterranean Conference on Control and Automation (MED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2015.7158895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2015.7158895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Q-Learning based approach to Quality of Experience control in cognitive Future Internet networks
The paper describes an innovative and fully cognitive approach which offers the opportunity to cope with some key limitations of the present telecommunication networks by means of the introduction of a novel architecture design in the perspective of the emerging Future Internet framework. Within this architecture, the Quality of Experience (QoE) Management functionalities are aimed at approaching the desired QoE level of the applications by dynamically selecting the most appropriate Class of Service supported by the network. In the present work, this selection is driven by an optimal and adaptive control strategy based on the renowned Q-Learning algorithm. The proposed dynamic approach differs from the traffic classification approaches found in the literature, where a static assignment of Classes of Service to applications is performed.