限制半群

Yanhui Wang, X. Ren, K. Shum
{"title":"限制半群","authors":"Yanhui Wang, X. Ren, K. Shum","doi":"10.1142/9789811215476_0025","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to investigate restriction ω -semigroups. Here a restriction ω -semigroup is a generalisation of an inverse ω -semigroup. We give a description of a class of restriction ω -semigroups, namely, restriction ω -semigroups with an inverse skeleton. We show that a restriction ω -semigroup with an inverse skeleton is an ideal extension of a (cid:2) J -simple restriction ω -semigroup by a restriction semigroup with a finite chain of projections with a zero adjoined. This result is analogous to Munn’s result for inverse ω -semigroups. In addition, we show that the Bruck–Reilly semigroup of a strong semilattice of monoids indexed by a finite chain is a (cid:2) J -simple restriction ω -semigroup with an inverse skeleton, conversely, every (cid:2) J -simple restriction ω -semigroup with an inverse skeleton arises in this way.","PeriodicalId":106509,"journal":{"name":"New Trends in Algebras and Combinatorics","volume":"316 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Restriction semigroups\",\"authors\":\"Yanhui Wang, X. Ren, K. Shum\",\"doi\":\"10.1142/9789811215476_0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to investigate restriction ω -semigroups. Here a restriction ω -semigroup is a generalisation of an inverse ω -semigroup. We give a description of a class of restriction ω -semigroups, namely, restriction ω -semigroups with an inverse skeleton. We show that a restriction ω -semigroup with an inverse skeleton is an ideal extension of a (cid:2) J -simple restriction ω -semigroup by a restriction semigroup with a finite chain of projections with a zero adjoined. This result is analogous to Munn’s result for inverse ω -semigroups. In addition, we show that the Bruck–Reilly semigroup of a strong semilattice of monoids indexed by a finite chain is a (cid:2) J -simple restriction ω -semigroup with an inverse skeleton, conversely, every (cid:2) J -simple restriction ω -semigroup with an inverse skeleton arises in this way.\",\"PeriodicalId\":106509,\"journal\":{\"name\":\"New Trends in Algebras and Combinatorics\",\"volume\":\"316 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Trends in Algebras and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811215476_0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Trends in Algebras and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811215476_0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是研究限制ω -半群。这里的限制ω -半群是逆ω -半群的推广。给出了一类限制ω -半群的描述,即具有逆骨架的限制ω -半群。证明了具有逆骨架的限制ω -半群是(cid:2) J -简单限制ω -半群由具有零邻边的有限投影链的限制半群的理想扩展。这个结果类似于Munn关于逆ω -半群的结果。此外,我们还证明了由有限链索引的单群强半格的Bruck-Reilly半群是一个具有逆骨架的(cid:2) J -简单限制ω -半群,反之,每一个具有逆骨架的(cid:2) J -简单限制ω -半群都以这种方式出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Restriction semigroups
The purpose of this paper is to investigate restriction ω -semigroups. Here a restriction ω -semigroup is a generalisation of an inverse ω -semigroup. We give a description of a class of restriction ω -semigroups, namely, restriction ω -semigroups with an inverse skeleton. We show that a restriction ω -semigroup with an inverse skeleton is an ideal extension of a (cid:2) J -simple restriction ω -semigroup by a restriction semigroup with a finite chain of projections with a zero adjoined. This result is analogous to Munn’s result for inverse ω -semigroups. In addition, we show that the Bruck–Reilly semigroup of a strong semilattice of monoids indexed by a finite chain is a (cid:2) J -simple restriction ω -semigroup with an inverse skeleton, conversely, every (cid:2) J -simple restriction ω -semigroup with an inverse skeleton arises in this way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信