弹道数据中近似接近查询的动态数据结构

M. D. Berg, Joachim Gudmundsson, Ali D. Mehrabi
{"title":"弹道数据中近似接近查询的动态数据结构","authors":"M. D. Berg, Joachim Gudmundsson, Ali D. Mehrabi","doi":"10.1145/3139958.3140023","DOIUrl":null,"url":null,"abstract":"Let S be a set of n polygonal trajectories in the plane and k be a fixed constant. We present a data structure to store S so that, given a k-vertex query trajectory Q, we can answer the following queries approximately: • Nearest neighbor query: given a query trajectory Q, report the trajectory in S with minimum Fréchet distance to Q. • Top-j query: given a query trajectory Q and a positive integer j, report the j trajectories in S with minimum Fréchet distance to Q. • Range reporting query: given a query trajectory Q and a number δmax, report all trajectories in S with Fréchet distance at most δmax to Q. • Similarity query: given a query trajectory Q and a trajectory τ ∈ S, report the Fréchet distance between Q and τ. Our data structure answers these queries approximately with an additive error that is at most ϵ · reach(Q) for a given fixed constant ϵ > 0, where reach(Q) is the maximum distance between the start vertex of Q and any other vertex of Q. Furthermore, our query procedures ignore trajectories whose Fréchet distance to the query Q is very large. That is, if no trajectory is close to the query trajectory then no answer might be returned. The data structure uses O(n/ϵ2k) space and answers each of the queries above in time O(1 + #answers). Our data structure is the first one that can answer all these queries with provable error guarantees. Moreover, it is fully dynamic: inserting and deleting a trajectory with m vertices takes O(1/ϵ2k (m + log(1/ϵ))) and O(1/ϵ2k) amortized time, respectively. Finally, we empirically evaluate our data structure.","PeriodicalId":270649,"journal":{"name":"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Dynamic Data Structure for Approximate Proximity Queries in Trajectory Data\",\"authors\":\"M. D. Berg, Joachim Gudmundsson, Ali D. Mehrabi\",\"doi\":\"10.1145/3139958.3140023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let S be a set of n polygonal trajectories in the plane and k be a fixed constant. We present a data structure to store S so that, given a k-vertex query trajectory Q, we can answer the following queries approximately: • Nearest neighbor query: given a query trajectory Q, report the trajectory in S with minimum Fréchet distance to Q. • Top-j query: given a query trajectory Q and a positive integer j, report the j trajectories in S with minimum Fréchet distance to Q. • Range reporting query: given a query trajectory Q and a number δmax, report all trajectories in S with Fréchet distance at most δmax to Q. • Similarity query: given a query trajectory Q and a trajectory τ ∈ S, report the Fréchet distance between Q and τ. Our data structure answers these queries approximately with an additive error that is at most ϵ · reach(Q) for a given fixed constant ϵ > 0, where reach(Q) is the maximum distance between the start vertex of Q and any other vertex of Q. Furthermore, our query procedures ignore trajectories whose Fréchet distance to the query Q is very large. That is, if no trajectory is close to the query trajectory then no answer might be returned. The data structure uses O(n/ϵ2k) space and answers each of the queries above in time O(1 + #answers). Our data structure is the first one that can answer all these queries with provable error guarantees. Moreover, it is fully dynamic: inserting and deleting a trajectory with m vertices takes O(1/ϵ2k (m + log(1/ϵ))) and O(1/ϵ2k) amortized time, respectively. Finally, we empirically evaluate our data structure.\",\"PeriodicalId\":270649,\"journal\":{\"name\":\"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3139958.3140023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139958.3140023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

设S是平面上n条多边形轨迹的集合,k是一个固定常数。我们提出了一种存储S的数据结构,在给定一个k顶点的查询轨迹Q的情况下,我们可以近似地回答以下查询:•最近邻查询:给定一个查询轨迹Q,将S中fr交换距离最小的轨迹报告给Q•Top-j查询:给定一个查询轨迹Q和一个正整数j,将S中fr交换距离最小的j个轨迹报告给Q•范围报告查询:给定一个查询轨迹Q和一个数δmax,报告S中所有与Q的δmax距离最大的轨迹。•相似性查询:给定一个查询轨迹Q和一个轨迹τ∈S,报告Q与τ之间的fr切距离。我们的数据结构近似地回答了这些查询,对于给定的固定常数ε > 0,其加性误差最多为λ·reach(Q),其中reach(Q)是Q的起始顶点与Q的任何其他顶点之间的最大距离。此外,我们的查询过程忽略了与查询Q的fr切距离非常大的轨迹。也就是说,如果没有轨迹接近查询轨迹,则可能不会返回任何答案。该数据结构使用O(n/ϵ2k)空间,并在O(1 + #个答案)时间内回答上面的每个查询。我们的数据结构是第一个可以用可证明的错误保证回答所有这些查询的数据结构。此外,它是完全动态的:插入和删除有m个顶点的轨迹分别需要O(1/ϵ2k (m + log(1/ λ))和O(1/ϵ2k)平摊时间。最后,我们对我们的数据结构进行经验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dynamic Data Structure for Approximate Proximity Queries in Trajectory Data
Let S be a set of n polygonal trajectories in the plane and k be a fixed constant. We present a data structure to store S so that, given a k-vertex query trajectory Q, we can answer the following queries approximately: • Nearest neighbor query: given a query trajectory Q, report the trajectory in S with minimum Fréchet distance to Q. • Top-j query: given a query trajectory Q and a positive integer j, report the j trajectories in S with minimum Fréchet distance to Q. • Range reporting query: given a query trajectory Q and a number δmax, report all trajectories in S with Fréchet distance at most δmax to Q. • Similarity query: given a query trajectory Q and a trajectory τ ∈ S, report the Fréchet distance between Q and τ. Our data structure answers these queries approximately with an additive error that is at most ϵ · reach(Q) for a given fixed constant ϵ > 0, where reach(Q) is the maximum distance between the start vertex of Q and any other vertex of Q. Furthermore, our query procedures ignore trajectories whose Fréchet distance to the query Q is very large. That is, if no trajectory is close to the query trajectory then no answer might be returned. The data structure uses O(n/ϵ2k) space and answers each of the queries above in time O(1 + #answers). Our data structure is the first one that can answer all these queries with provable error guarantees. Moreover, it is fully dynamic: inserting and deleting a trajectory with m vertices takes O(1/ϵ2k (m + log(1/ϵ))) and O(1/ϵ2k) amortized time, respectively. Finally, we empirically evaluate our data structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信