基于快速相干信号子空间的宽带信号测向

M. Frikel, S. Bourennane
{"title":"基于快速相干信号子空间的宽带信号测向","authors":"M. Frikel, S. Bourennane","doi":"10.1109/DSPWS.1996.555529","DOIUrl":null,"url":null,"abstract":"A method to estimate the set of bias vectors spanning the signal subspace without eigendecomposition is described. Each basis vector can be determined by the Lanczos algorithm. The signal subspace estimates at each frequency are transformed by focusing matrices such that the coherent signal subspace will be constructed for all analysis bands. The performance of the proposed method is shown to be almost the same as that of the classical eigendecomposition method.","PeriodicalId":131323,"journal":{"name":"1996 IEEE Digital Signal Processing Workshop Proceedings","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Direction finding for wideband signals using fast coherent signal subspace\",\"authors\":\"M. Frikel, S. Bourennane\",\"doi\":\"10.1109/DSPWS.1996.555529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method to estimate the set of bias vectors spanning the signal subspace without eigendecomposition is described. Each basis vector can be determined by the Lanczos algorithm. The signal subspace estimates at each frequency are transformed by focusing matrices such that the coherent signal subspace will be constructed for all analysis bands. The performance of the proposed method is shown to be almost the same as that of the classical eigendecomposition method.\",\"PeriodicalId\":131323,\"journal\":{\"name\":\"1996 IEEE Digital Signal Processing Workshop Proceedings\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 IEEE Digital Signal Processing Workshop Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSPWS.1996.555529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 IEEE Digital Signal Processing Workshop Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSPWS.1996.555529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

描述了一种估计跨信号子空间的偏置向量集而不需要特征分解的方法。每个基向量可以通过Lanczos算法确定。通过聚焦矩阵对每个频率的信号子空间估计进行变换,从而为所有分析频带构建相干信号子空间。结果表明,该方法的性能与经典特征分解方法几乎相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direction finding for wideband signals using fast coherent signal subspace
A method to estimate the set of bias vectors spanning the signal subspace without eigendecomposition is described. Each basis vector can be determined by the Lanczos algorithm. The signal subspace estimates at each frequency are transformed by focusing matrices such that the coherent signal subspace will be constructed for all analysis bands. The performance of the proposed method is shown to be almost the same as that of the classical eigendecomposition method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信