非欧几里得相似性度量的Ward分层聚类方法

S. Miyamoto, Ryosuke Abe, Y. Endo, J. Takeshita
{"title":"非欧几里得相似性度量的Ward分层聚类方法","authors":"S. Miyamoto, Ryosuke Abe, Y. Endo, J. Takeshita","doi":"10.1109/SOCPAR.2015.7492784","DOIUrl":null,"url":null,"abstract":"The Ward linkage method in agglomerative hierarchical clustering is sometimes used for non-Euclidean similarity, i.e., non-positive definite matrix of similarity, which is not an adequate use of this method, since the square Euclidean distance should be its basis. Nevertheless, this paper shows that the Ward method for non positive-definite similarity can partly be justified. It is shown that the result from the Ward method to a non positive-definite and normalized similarity is almost the same as another result from the Ward method to a positive-definite matrix obtained from the original similarity by adding a positive constant to the diagonal elements. More precisely, the same clusters are generated by the same order from the both data. Only the levels of their generations are different.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Ward method of hierarchical clustering for non-Euclidean similarity measures\",\"authors\":\"S. Miyamoto, Ryosuke Abe, Y. Endo, J. Takeshita\",\"doi\":\"10.1109/SOCPAR.2015.7492784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ward linkage method in agglomerative hierarchical clustering is sometimes used for non-Euclidean similarity, i.e., non-positive definite matrix of similarity, which is not an adequate use of this method, since the square Euclidean distance should be its basis. Nevertheless, this paper shows that the Ward method for non positive-definite similarity can partly be justified. It is shown that the result from the Ward method to a non positive-definite and normalized similarity is almost the same as another result from the Ward method to a positive-definite matrix obtained from the original similarity by adding a positive constant to the diagonal elements. More precisely, the same clusters are generated by the same order from the both data. Only the levels of their generations are different.\",\"PeriodicalId\":409493,\"journal\":{\"name\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2015.7492784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

聚类层次聚类中的Ward链接法有时会用于非欧几里得相似度,即相似度的非正定矩阵,这并不是对该方法的充分利用,因为它应该以欧几里得距离的平方为基础。然而,本文证明了Ward方法对于非正定相似度的部分合理性。结果表明,Ward方法得到的非正定归一化相似度的结果与Ward方法在原相似度的对角元上加一个正常数得到的正定矩阵的结果几乎相同。更准确地说,从两个数据中以相同的顺序生成相同的集群。只是他们几代人的水平不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ward method of hierarchical clustering for non-Euclidean similarity measures
The Ward linkage method in agglomerative hierarchical clustering is sometimes used for non-Euclidean similarity, i.e., non-positive definite matrix of similarity, which is not an adequate use of this method, since the square Euclidean distance should be its basis. Nevertheless, this paper shows that the Ward method for non positive-definite similarity can partly be justified. It is shown that the result from the Ward method to a non positive-definite and normalized similarity is almost the same as another result from the Ward method to a positive-definite matrix obtained from the original similarity by adding a positive constant to the diagonal elements. More precisely, the same clusters are generated by the same order from the both data. Only the levels of their generations are different.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信