{"title":"Bagging和Boosting集成分类器的比较评价","authors":"Hanae Aoulad Ali, Chrayah Mohamed, Bouzidi Abdelhamid, Nabil Ourdani, T. Alami","doi":"10.1109/ISCV54655.2022.9806080","DOIUrl":null,"url":null,"abstract":"In recent years, ensemble learning has sparked a lot of interest in the fields of machine learning. In a variety of issue areas domains and real-world applications, recently ensemble learning approach get a lot attention to provide results. Ensemble learning reduces overall variance by combining the output of numerous classifiers or a group of base learners. When compared to a single classifier or single basis learner, combining numerous Classifiers or a collection of base learners improves accuracy significantly. This research is aimed at comparison of two sort of ensemble learning approaches used in machine learning. The Extra Trees classifier had been the most accurate, with a score of accuracy of 90 %","PeriodicalId":426665,"journal":{"name":"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Comparative Evaluation use Bagging and Boosting Ensemble Classifiers\",\"authors\":\"Hanae Aoulad Ali, Chrayah Mohamed, Bouzidi Abdelhamid, Nabil Ourdani, T. Alami\",\"doi\":\"10.1109/ISCV54655.2022.9806080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, ensemble learning has sparked a lot of interest in the fields of machine learning. In a variety of issue areas domains and real-world applications, recently ensemble learning approach get a lot attention to provide results. Ensemble learning reduces overall variance by combining the output of numerous classifiers or a group of base learners. When compared to a single classifier or single basis learner, combining numerous Classifiers or a collection of base learners improves accuracy significantly. This research is aimed at comparison of two sort of ensemble learning approaches used in machine learning. The Extra Trees classifier had been the most accurate, with a score of accuracy of 90 %\",\"PeriodicalId\":426665,\"journal\":{\"name\":\"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCV54655.2022.9806080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCV54655.2022.9806080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comparative Evaluation use Bagging and Boosting Ensemble Classifiers
In recent years, ensemble learning has sparked a lot of interest in the fields of machine learning. In a variety of issue areas domains and real-world applications, recently ensemble learning approach get a lot attention to provide results. Ensemble learning reduces overall variance by combining the output of numerous classifiers or a group of base learners. When compared to a single classifier or single basis learner, combining numerous Classifiers or a collection of base learners improves accuracy significantly. This research is aimed at comparison of two sort of ensemble learning approaches used in machine learning. The Extra Trees classifier had been the most accurate, with a score of accuracy of 90 %