基于对比学习的人脸图像年龄预测

Yeongnam Chae, Poulami Raha, Mijung Kim, B. Stenger
{"title":"基于对比学习的人脸图像年龄预测","authors":"Yeongnam Chae, Poulami Raha, Mijung Kim, B. Stenger","doi":"10.23919/MVA57639.2023.10216074","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for accurately estimating age from face images, which overcomes the challenge of collecting a large dataset of individuals with the same identity at different ages. Instead, we leverage readily available face datasets of different people at different ages and aim to extract age-related features using contrastive learning. Our method emphasizes these relevant features while suppressing identity-related features using a combination of cosine similarity and triplet margin losses. We demonstrate the effectiveness of our proposed approach by achieving state-of-the-art performance on two public datasets, FG-NET and MORPH II.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Age Prediction From Face Images Via Contrastive Learning\",\"authors\":\"Yeongnam Chae, Poulami Raha, Mijung Kim, B. Stenger\",\"doi\":\"10.23919/MVA57639.2023.10216074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach for accurately estimating age from face images, which overcomes the challenge of collecting a large dataset of individuals with the same identity at different ages. Instead, we leverage readily available face datasets of different people at different ages and aim to extract age-related features using contrastive learning. Our method emphasizes these relevant features while suppressing identity-related features using a combination of cosine similarity and triplet margin losses. We demonstrate the effectiveness of our proposed approach by achieving state-of-the-art performance on two public datasets, FG-NET and MORPH II.\",\"PeriodicalId\":338734,\"journal\":{\"name\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA57639.2023.10216074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10216074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种从人脸图像中准确估计年龄的新方法,克服了在不同年龄收集具有相同身份的个体的大数据集的挑战。相反,我们利用现成的不同年龄的不同人的面部数据集,旨在使用对比学习提取与年龄相关的特征。我们的方法强调这些相关特征,同时使用余弦相似度和三重边缘损失的组合来抑制身份相关特征。我们通过在两个公共数据集FG-NET和MORPH II上实现最先进的性能来证明我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Age Prediction From Face Images Via Contrastive Learning
This paper presents a novel approach for accurately estimating age from face images, which overcomes the challenge of collecting a large dataset of individuals with the same identity at different ages. Instead, we leverage readily available face datasets of different people at different ages and aim to extract age-related features using contrastive learning. Our method emphasizes these relevant features while suppressing identity-related features using a combination of cosine similarity and triplet margin losses. We demonstrate the effectiveness of our proposed approach by achieving state-of-the-art performance on two public datasets, FG-NET and MORPH II.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信