基于学习排序框架的万隆政府投诉文本自动多标签分类

A. Fauzan, M. L. Khodra
{"title":"基于学习排序框架的万隆政府投诉文本自动多标签分类","authors":"A. Fauzan, M. L. Khodra","doi":"10.1109/ICAICTA.2014.7005910","DOIUrl":null,"url":null,"abstract":"Learning to rank is a technique in machine learning for ranking problem. This paper aims to investigate this technique to classify the responsible agencies of each complaint text of LAPOR, which is our government complaint management system. Since this categorization problem is multilabel one and the latest work using learning to rank for multilabel classification gave promising result, we work on experiment to compare the typical classification solution with our proposed approaches on this multilabel categorization problem. The experiment results show that LamdaMART, which is listvvise approach in learning to rank, is the best algorithm for classifying the primary agency and the secondary agencies for complaint text.","PeriodicalId":173600,"journal":{"name":"2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Automatic multilabel categorization using learning to rank framework for complaint text on Bandung government\",\"authors\":\"A. Fauzan, M. L. Khodra\",\"doi\":\"10.1109/ICAICTA.2014.7005910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning to rank is a technique in machine learning for ranking problem. This paper aims to investigate this technique to classify the responsible agencies of each complaint text of LAPOR, which is our government complaint management system. Since this categorization problem is multilabel one and the latest work using learning to rank for multilabel classification gave promising result, we work on experiment to compare the typical classification solution with our proposed approaches on this multilabel categorization problem. The experiment results show that LamdaMART, which is listvvise approach in learning to rank, is the best algorithm for classifying the primary agency and the secondary agencies for complaint text.\",\"PeriodicalId\":173600,\"journal\":{\"name\":\"2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICTA.2014.7005910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICTA.2014.7005910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

排序学习是机器学习中解决排序问题的一种技术。本文旨在研究该技术对我国政府投诉管理系统LAPOR中各投诉文本的责任机构进行分类。由于该分类问题是一个多标签分类问题,并且最新使用学习对多标签分类进行排序的工作取得了很好的结果,因此我们进行了实验,将典型分类解决方案与我们提出的多标签分类方法进行了比较。实验结果表明,LamdaMART算法是对投诉文本进行一级代理和二级代理分类的最佳算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic multilabel categorization using learning to rank framework for complaint text on Bandung government
Learning to rank is a technique in machine learning for ranking problem. This paper aims to investigate this technique to classify the responsible agencies of each complaint text of LAPOR, which is our government complaint management system. Since this categorization problem is multilabel one and the latest work using learning to rank for multilabel classification gave promising result, we work on experiment to compare the typical classification solution with our proposed approaches on this multilabel categorization problem. The experiment results show that LamdaMART, which is listvvise approach in learning to rank, is the best algorithm for classifying the primary agency and the secondary agencies for complaint text.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信