{"title":"无线传感器网络的有限元边界积分数值分析技术","authors":"J. Mologni, Kaku Saito","doi":"10.1109/IMOC.2011.6169236","DOIUrl":null,"url":null,"abstract":"Wireless sensor technology is becoming a practical replacement to the conventional wired sensors primarily due to the easiness of implementation and cost reduction. In spite of that, process industries are not still using such kind of solution in large scale due to lack of field-proven data related to robustness and reliability of the communication link. A wireless sensor network (WSN) consists of spatially distributed independent sensors that are connected to a wired gateway. The present study shows a full wave simulation of a WSN installed in a subsection of a refinery coupled to a circuit simulator that generates electric wave forms according to IEEE 802.11 specification. The finite element boundary integral (FEBI) approach, which is now commercially available in Ansys HFSS, was used to solve the electromagnetic model. The advantages of FEBI for solving very large field problems are presented and the simulation results were compared to the finite element method (FEM) and the method of moments (MoM). The integration of a 3D field solver and a circuit simulator enables the calculation of radiation patterns, electric field plots, bit error rate, constellation plots while incorporating the actual transmitter and receiver antennas and the electrical schematic of the sensors and gateway. The purpose of this simulation is to investigate the limitation of the technology, help engineers to create best practices for WSN installation and to give an approach for the optimization of gateways positioning.","PeriodicalId":179351,"journal":{"name":"2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Wireless sensor network analysis using the finite element boundary integral numerical technique\",\"authors\":\"J. Mologni, Kaku Saito\",\"doi\":\"10.1109/IMOC.2011.6169236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensor technology is becoming a practical replacement to the conventional wired sensors primarily due to the easiness of implementation and cost reduction. In spite of that, process industries are not still using such kind of solution in large scale due to lack of field-proven data related to robustness and reliability of the communication link. A wireless sensor network (WSN) consists of spatially distributed independent sensors that are connected to a wired gateway. The present study shows a full wave simulation of a WSN installed in a subsection of a refinery coupled to a circuit simulator that generates electric wave forms according to IEEE 802.11 specification. The finite element boundary integral (FEBI) approach, which is now commercially available in Ansys HFSS, was used to solve the electromagnetic model. The advantages of FEBI for solving very large field problems are presented and the simulation results were compared to the finite element method (FEM) and the method of moments (MoM). The integration of a 3D field solver and a circuit simulator enables the calculation of radiation patterns, electric field plots, bit error rate, constellation plots while incorporating the actual transmitter and receiver antennas and the electrical schematic of the sensors and gateway. The purpose of this simulation is to investigate the limitation of the technology, help engineers to create best practices for WSN installation and to give an approach for the optimization of gateways positioning.\",\"PeriodicalId\":179351,\"journal\":{\"name\":\"2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMOC.2011.6169236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMOC.2011.6169236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wireless sensor network analysis using the finite element boundary integral numerical technique
Wireless sensor technology is becoming a practical replacement to the conventional wired sensors primarily due to the easiness of implementation and cost reduction. In spite of that, process industries are not still using such kind of solution in large scale due to lack of field-proven data related to robustness and reliability of the communication link. A wireless sensor network (WSN) consists of spatially distributed independent sensors that are connected to a wired gateway. The present study shows a full wave simulation of a WSN installed in a subsection of a refinery coupled to a circuit simulator that generates electric wave forms according to IEEE 802.11 specification. The finite element boundary integral (FEBI) approach, which is now commercially available in Ansys HFSS, was used to solve the electromagnetic model. The advantages of FEBI for solving very large field problems are presented and the simulation results were compared to the finite element method (FEM) and the method of moments (MoM). The integration of a 3D field solver and a circuit simulator enables the calculation of radiation patterns, electric field plots, bit error rate, constellation plots while incorporating the actual transmitter and receiver antennas and the electrical schematic of the sensors and gateway. The purpose of this simulation is to investigate the limitation of the technology, help engineers to create best practices for WSN installation and to give an approach for the optimization of gateways positioning.