{"title":"基于像元和基于地物的遥感图像分类研究","authors":"M. Younis, E. Keedwell, D. Savić","doi":"10.1109/ICOASE.2018.8548845","DOIUrl":null,"url":null,"abstract":"This research evaluates pixel-based and object-based image classification techniques for extracting three land-use categories (buildings, roads, and vegetation areas) from six satellite images. The performance of eight supervised machine learning classifiers with 5-fold cross validation are also compared. Experimental validation found that using 'Bagged Tree' for object-based classification algorithms provides maximum overall accuracy when tested on 10,000 objects produced by the SLIC segmentation method, and improves upon an existing RGB-based approach. Our aforementioned proposed approach takes about 12 times less total runtime than the pixel-based method, demonstrating the power of the combined approach.","PeriodicalId":144020,"journal":{"name":"2018 International Conference on Advanced Science and Engineering (ICOASE)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Investigation of Pixel-Based and Object-Based Image Classification in Remote Sensing\",\"authors\":\"M. Younis, E. Keedwell, D. Savić\",\"doi\":\"10.1109/ICOASE.2018.8548845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research evaluates pixel-based and object-based image classification techniques for extracting three land-use categories (buildings, roads, and vegetation areas) from six satellite images. The performance of eight supervised machine learning classifiers with 5-fold cross validation are also compared. Experimental validation found that using 'Bagged Tree' for object-based classification algorithms provides maximum overall accuracy when tested on 10,000 objects produced by the SLIC segmentation method, and improves upon an existing RGB-based approach. Our aforementioned proposed approach takes about 12 times less total runtime than the pixel-based method, demonstrating the power of the combined approach.\",\"PeriodicalId\":144020,\"journal\":{\"name\":\"2018 International Conference on Advanced Science and Engineering (ICOASE)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Advanced Science and Engineering (ICOASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOASE.2018.8548845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Advanced Science and Engineering (ICOASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOASE.2018.8548845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Investigation of Pixel-Based and Object-Based Image Classification in Remote Sensing
This research evaluates pixel-based and object-based image classification techniques for extracting three land-use categories (buildings, roads, and vegetation areas) from six satellite images. The performance of eight supervised machine learning classifiers with 5-fold cross validation are also compared. Experimental validation found that using 'Bagged Tree' for object-based classification algorithms provides maximum overall accuracy when tested on 10,000 objects produced by the SLIC segmentation method, and improves upon an existing RGB-based approach. Our aforementioned proposed approach takes about 12 times less total runtime than the pixel-based method, demonstrating the power of the combined approach.