基于RBF神经网络参数优化的水田算法

Sheng Wang, D. Dai, Huijuan Hu, Yen-Lun Chen, Xinyu Wu
{"title":"基于RBF神经网络参数优化的水田算法","authors":"Sheng Wang, D. Dai, Huijuan Hu, Yen-Lun Chen, Xinyu Wu","doi":"10.1109/ICINFA.2011.5949015","DOIUrl":null,"url":null,"abstract":"With regard to the issue of selecting Radial Basis Functions (RBF) neural network center parameters, this paper has introduced the paddy field algorithm (PFA) for its optimization. PFA had stronger global search capacity and higher convergence speed so as to better optimize RBF neural network. In the simulation experiment, this method was applied to approximation and prediction of a typical nonlinear function and compare with PSO (Particle Swarm Optimization) algorithm and the methodology of training by traditional gradient descent algorithm. The experiment showed that all predicted errors were lower than that of PSO predicted results.","PeriodicalId":299418,"journal":{"name":"2011 IEEE International Conference on Information and Automation","volume":"57 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"RBF neural network parameters optimization based on paddy field algorithm\",\"authors\":\"Sheng Wang, D. Dai, Huijuan Hu, Yen-Lun Chen, Xinyu Wu\",\"doi\":\"10.1109/ICINFA.2011.5949015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With regard to the issue of selecting Radial Basis Functions (RBF) neural network center parameters, this paper has introduced the paddy field algorithm (PFA) for its optimization. PFA had stronger global search capacity and higher convergence speed so as to better optimize RBF neural network. In the simulation experiment, this method was applied to approximation and prediction of a typical nonlinear function and compare with PSO (Particle Swarm Optimization) algorithm and the methodology of training by traditional gradient descent algorithm. The experiment showed that all predicted errors were lower than that of PSO predicted results.\",\"PeriodicalId\":299418,\"journal\":{\"name\":\"2011 IEEE International Conference on Information and Automation\",\"volume\":\"57 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Information and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2011.5949015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Information and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2011.5949015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对径向基函数(RBF)神经网络中心参数的选择问题,本文引入了水田算法(PFA)进行优化。PFA具有更强的全局搜索能力和更快的收敛速度,可以更好地优化RBF神经网络。在仿真实验中,将该方法应用于典型非线性函数的逼近和预测,并与粒子群算法(PSO)和传统梯度下降算法的训练方法进行了比较。实验表明,所有预测误差均低于PSO预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RBF neural network parameters optimization based on paddy field algorithm
With regard to the issue of selecting Radial Basis Functions (RBF) neural network center parameters, this paper has introduced the paddy field algorithm (PFA) for its optimization. PFA had stronger global search capacity and higher convergence speed so as to better optimize RBF neural network. In the simulation experiment, this method was applied to approximation and prediction of a typical nonlinear function and compare with PSO (Particle Swarm Optimization) algorithm and the methodology of training by traditional gradient descent algorithm. The experiment showed that all predicted errors were lower than that of PSO predicted results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信